CITY OF SANTA CRUZ GROUNDWATER RESOURCES

Isidro Rivera, P.E.

Water For Our Future

CITY OF SANTA CRUZ GROUNDWATER RESOURCES

- GROUNDWATER FACILITIES
 - A. Production Wells
 - B. Monitoring Wells
- 2. SOQUEL-APTOS BASIN HYDROGEOLOGY
 - A. Where do the City and neighboring agencies pump from
- 3. GROUNDWATER PRODUCTION
 - A. Historic Groundwater Production
 - B. Future Groundwater Production
- 4. WATER LEVELS AND TRENDS
- RECENT AND CURRENT WORK

CITY OF SANTA CRUZ GROUNDWATER FACILITIES

PRODUCTION WELLS

MONITORING WELLS INSTALLED PRIOR TO 1990

MONITORING WELLS INSTALLED 2003-2004

MONITORING WELLS INSTALLED 2009

BELTZ #12 SOQUEL AV CORY ST MW-1, 2, 3 **AUTO PLAZA DRIVE** COFFEE LANE PARK CAPITOLA RO 30TH AVE BELTZ#4 WAN LAKE **BELTZ #8** BELTZ #10 BELTZ #6 BELTZ #7 PORTOLA DR CORCORAN LAKE BELTZ #9 PLEASURE POINT BELTZ #2 MORAN LAKE SOQUEL POINT

MONITORING WELLS

MONITORING WELLS INSTALLED 2012

MONITORING WELLS INSTALLED 2013

GROUNDWATER FACILITIES

MONITORING WELL LOCATION SUMMARY

- A. TWO (2) MONITORING WELL LOCATIONS PRIOR TO 1990 (5 wells)
- B. THIRTEEN (13) ADDITIONAL MONITORING WELL LOCATIONS SINCE 2003 (30 wells)

Soquel-Aptos Groundwater Management Area

Water For Our Future

WELL LOCATION MAP

Water For Our Future

Source: Supplemental Hydrogeological Study: Purisima Aquifer Delineation Live Oak-Capitola Area of Soquel-Aptos Groundwater Basin Prepared by Hopkins Groundwater Consultants

Source: Supplemental Hydrogeological Study: Purisima Aquifer Delineation Live Oak-Capitola Area of Soquel-Aptos Groundwater Basin Prepared by Hopkins Groundwater Consultants

Production Well	Well Depth (ft)	Screen Depth (ft, bgs)	Year Installed	Aquifer Unit	Well Production (MG)*
Beltz 8	210	100 - 180	1998	Purisima A	64.26
Beltz 9	230	110 - 200	1998	Purisima A	47.80
Beltz 10	362	124-140, 200- 271, 301-327, 337-357	2004	Purisima A & Purisima AA	39.75
Beltz 12	650	200-290, 310- 390, 410-470, 550-640	2012	Purisima A Purisima AA & Tu(SM)	

^{*} Annual Average well production from 2004-2014

Yearly Production Based on Well Meter Reads Municipal Pumping in 2013 was 5,300 AF (~1,700 MG) **Calendar Year** 2014 Production through the end of October Total Bain Pumping estimated to be ~ 8,300 AF (~2,700 MG)

FUTURE GROUNDWATER PRODUCTION

- A. 525 acre-ft/yr (170 MG) in non-critically dry years
- B. 645 acre-ft/yr (210 MG) in critically dry years
- C. Production goals based on maintaining groundwater levels that protect aquifer from saltwater intrusion.
- D. Production goal includes all Beltz Wells (i.e, includes Beltz 12)

BELTZ 12 FINAL ENVIRONMENTAL IMPACT REPORT

- A. Established City Pumping Goals
- B. Described 3 Voluntary Design Features
 - Groundwater Basin Monitoring/Adaptive Management Plan
 - Monitoring and Well Protection Program for Private Wells
 - Soquel Creek Streamflow Monitoring Program

COOPERATIVE MONITORING/ADAPTIVE GROUNDWATER MANAGEMENT AGREEMENT BETWEEN CITY OF SANTA CRUZ/SOQUEL CREEK WATER DISTRICT.

Management Objectives:

- Protect Soquel-Aptos Basin from Seawater Intrusion
- Allow for redistribution of pumping inland
- Maintain inland levels that promote flow toward coastal wells.
- Provide both agencies with flexibility to respond to changing water demands, changing water supply availability and infrastructure limitations.

WATER LEVELS AND TRENDS

WATER LEVELS AND TRENDS

WATER LEVELS AND TRENDS

- 1. CITY ACCEPTED INVITATION TO JOIN THE BASIN IMPLEMENTATION GROUP (BIG)
- 2. PARTICIPATE IN THE DEVELOPMENT OF THE SUSTAINABLE GROUNDWATER MANAGEMENT AGENCY IN NORTHERN SANTA CRUZ COUNTY.
- 3. PARTICIPATE IN THE DEVELOPMENT OF A GROUNDWATER MODEL FOR THE SOQUEL-APTOS BASIN.

BASIN IMPLEMENTATION GROUP

- A. BIG was created in the mid-1990's to manage the Soquel-Aptos Groundwater area and to develop an AB3030 groundwater management plan.
- B. Goal of accepting invitation is to expand and further develop the partnerships and collaborative groundwater planning efforts that had been developing over time.

SUSTAINABLE GROUNDWATER MANAGEMENT ACT

- A. Allows the formation of a Groundwater Sustainability Agency (GSA) with authority to:
 - Develop a Groundwater Sustainability Plan (GSP)
 - Conduct Investigations
 - Determine the sustainable yield of a basin
 - Measure and limit extraction
 - Impose fees for groundwater management
 - Enforce the terms of the Groundwater Sustainability Plan
- B. GSA needs to be formed by June 30, 2017 and GSP needs to be completed by January 31, 2022

GROUNDWATER MODEL FOR SOQUEL-APTOS BASIN

A. Model inputs will include:

- I. Pumping rates and locations (effect of coordinated pumping)
- II. Availability of supplemental supplies, specifically supplies that are recharged or injected
- III. Changes in hydrologic conditions/climate change

B. Model scenarios/outputs include:

- Comparing groundwater levels to established protective elevations for preventing seawater intrusion
- II. Time for basin recovery; i.e., time for groundwater levels to rise to protective elevations
- III. Effects of stream flow
- IV. Movement of seawater interface

QUESTIONS?

