

Kennedy/Jenks Consultants

Groundwater Modeling and Management Enrichment Session City of Santa Cruz

26 August 2015

Presentation Outline

- Groundwater Basin Understanding
 - Aquifers
 - Groundwater Issues
- Recent Groundwater Model Update
 - Setup
 - Results
- Modeling Applications
 - Groundwater Management
 - Potential Recharge Projects

Groundwater Basin Understanding

Several water districts overlie the Santa Margarita Groundwater Basin

Kennedy/Jenks Consultants

Groundwater pumping is concentrated in the Scotts Valley area

The Basin is underlain by complexly folded sandstones and shales

Groundwater pumping is done my many different types of users

	Regional Historic	Regional – 2014	SVWD - 2014
Santa Margarita	894 (1987)	72	0
Monterey	587 (1984)	69	23
Lompico	2,705 (2003)	1,752	989
Butano	738 (1997)	368	365

Historic drawdown of groundwater result of Pumping, Climate and Geology

Recent Groundwater Model Update

Santa Margarita Groundwater Model

- Update the model with new geology data
- Update groundwater elevation, streamflow and other hydrologic 2006 - 2012 data
- Update model calibration with groundwater elevations and streamflows
- Run model scenarios of potential future conditions and aquifer recharge projects

The Basin Geology is Complex

Key Units in the Santa Margarita Groundwater Basin

Model uses 7 layers to represent Basin geology

Model calibrated to available groundwater elevation data

- Model has been updated
 - Latest interpretations and data
 - New modeling methods improve simulations including resaturation
- Model calibration to groundwater levels improved by about 30% to 35%

Entire Model	Updated	Original	Difference
Residual Mean	0.72	-5.09	86%
Absolute Residual Mean	13.32	19.33	31%
Residual Std. Deviation	19.41	28.51	32%
RMS Error	19.42	28.96	33%
Scaled Absolute Residual Mean	0.0194	0.0282	31%
Correlation Coefficient	96%	92%	5%
Number of Observations	16344	16344	0%
Range in Observations	685.45	685.45	0%

Water balance provides summary of Basin inflows and outflows

Model used to evaluate change in aquifer storage over time

Estimate of Sustainable Pumping Using Existing Well Locations

- SMGB Sustainable Pumping
 - SMGB 3,410 AFY
 - by Aquifer
 - Santa Margarita 1,030 AFY
 - Monterey Aquifer 170 AFY
 - Lompico Aquifer 1,890 AFY
 - Butano Aquifer 320 AFY
- Potential to maximize yield
 - Optimize pumping sites to limit "adverse affects"
 - Increase groundwater recharge
- Urbanization resulted in 15% decrease in Basin recharge

Modeling Applications

Initial scenarios to evaluate groundwater management and recharge

- Base Case
 - Assume Recent Pumping Volumes Remain Constant
 - Assume natural hydrology repeats of 1985-2012
- Groundwater Management #1
 - Future Water Demand Met by Groundwater Pumping
- Groundwater Management #2
 - Use Projected Future Water Demand Projections
- Enhanced Recharge #1
 - Assume 1,000 AFY injection into Lompico at Hanson Quarry
- Enhanced Recharge #2
 - Estimate Potential LID Recharge Projects

Results of initial groundwater management and recharge scenarios

Hanson Quarry is near water supply wells for SVWD, SLVWD and MHA.

Hanson Quarry provide location for direct recharge to the Lompico Aquifer

- ExistingDrinkingWater Well
- ProposedPurified WaterInjection Well

Travel times to water supply wells are on the order of several years

Active recharge produces significant increases in groundwater levels over time

Lowest Surface Elevation in Hanson Quarry - 554 feet

Elevation of SM/Lompico Contact - 480 feet

Over 28 year period, ~8,000 AF would go to groundwater storage and ~8,000 AF would go to environmental benefits for streams, springs and riparian habitat

Summary

- Santa Margarita Model has been updated
 - Latest interpretations and data
 - New modeling methods improve simulations including resaturation
- Model calibration has been improved
 - Groundwater levels
 - Streamflows
- Model applications
 - Evaluate groundwater management options
 - Planned measures help to stabilize aquifer storage
 - Provide assessment for potential active recharge projects

Questions