REVISED ADDITIONAL SOIL INVESTIGATION REPORT AND HUMAN HEALTH SCREENING EVALUATION

Lower Main Meadow, Pogonip Open Space 501 Golf Club Drive Santa Cruz, California 01-POG-002

Prepared For:

City of Santa Cruz
Parks and Recreations Department
323 Church Street
Santa Cruz, California 95060

Prepared By:

1371 Oakland Boulevard, Suite 200 Walnut Creek, California 94596

February 17, 2022

Doug Whichard Project Scientist

lvy Inouye

Principal Toxicologist

Donald W. Moore, P.G.

Principal Geologist

TABLE OF CONTENTS

			PAGE	
LIST	OF FIG	JRES	iii	
		LES		
LIST	OF APP	ENDICES	iii	
1.0	INTR	INTRODUCTION		
	1.1	Project Objective	1-2	
	1.2	Scope of Work		
2.0	SITE BACKGROUND			
	2.1	Site Location and Description	2-1	
	2.2	Historical Land Use		
	2.3	Current Land Use	2-2	
	2.4	Anticipated Land Use		
	2.5	Geological and Hydrogeological Setting		
	2.6	Conceptual Shooting Range Contaminant Distribution		
	2.7			
		2.7.1 2018/2019 Soil Investigation	2-5	
		2.7.2 February 2019 Soil Investigation	2-6	
		2.7.3 May 2020 Soil Investigation	2-7	
		2.7.4 December 2020 Site Visit	2-7	
		2.7.5 March 2021 Soil Investigation	2-8	
		2.7.6 Summary of COPCs	2-8	
		2.7.6.1 Metals	2-9	
		2.7.6.2 Polycyclic Aromatic Hydrocarbons	2-9	
3.0	HUMAN HEALTH CONCEPTUAL SITE MODEL			
	3.1	Chemical Source, Release, and Transport		
	3.2	Potential Receptors		
		3.2.1 Hypothetical On-Site Unrestricted Receptor	3-2	
		3.2.2 Hypothetical On-Site Commercial Worker Receptor	3-3	
		3.2.3 Hypothetical On-Site Recreational Trail User Receptor	3-3	
		3.2.4 Hypothetical On-Site Unauthorized Camper Receptor	3-3	
	3.3	Complete Exposure Pathways		

4.0	SCOPE OF WORK		
	4.1	Pre-field Activities	4-1
		4.1.1 Site Health and Safety Plan	4-1
		4.1.2 Site Reconnaissance	4-1
		4.1.3 Borehole Clearance	4-1
	4.2	Soil Screening and Sampling Locations and Depths	4-1
	4.3	Soil Logging, Screening, Sampling, and Laboratory Analysis	4-3
		4.3.1 Soil Logging	4-3
		4.3.2 Soil Screening	4-3
		4.3.3 Soil Sample Selection	4-4
		4.3.4 Soil Sampling Procedures	4-4
		4.3.5 Soil Analyses	4-4
	4.4	Borehole Completion	4-5
	4.5	Decontamination Procedures	4-5
	4.6	Investigation-Derived Waste Handling	4-5
	4.7	Field Variances	4-5
5.0	HUMAN HEALTH SCREENING EVALUATION OF LEAD ANALYTICAL		
	RESU	JLTS	5-1
	5.1	Analytical Summary	5-2
	5.2	Findings	
6.0	CONCLUSIONS		
7.0	LIMITATIONS7		
8.0	REFERENCES8-		

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Lead Concentrations Exceeding Screening Level for Recreational Trail User
Figure 4	Areas Exceeding Screening Levels for Recreational Trail Use
Figure 5	Human Health Conceptual Site Model
Figure 6	Areas Exceeding Screening Levels for Unrestricted Land Use

LIST OF TABLES

Table 1	Lead Concentrations in Soil
Table 2	Polycyclic Aromatic Hydrocarbon Concentrations in Soil

LIST OF APPENDICES

Appendix A	Excerpts From Previous Reports
Appendix B	Soil Screening Levels for Hypothetical Recreational Trail User Receptor and Hypothetical Unauthorized Camper Receptor
Appendix C	Field Datasheets
Appendix D	XRF Data
Appendix E	Laboratory Analytical Reports
Appendix F	Lead Model Spreadsheets

1.0 INTRODUCTION

RMD Environmental Solutions, Inc. (RMD), on behalf of the City of Santa Cruz (the City), has prepared this *Revised Additional Soil Investigation Report and Human Health Screening Evaluation* (Report) for the Lower Main Meadow, Pogonip Open Space, located at 501 Golf Club Drive¹ in Santa Cruz, California (the Site, Figures 1 and 2). The investigation activities documented in this Report were conducted in accordance with the *Revised Delineation of Lead-Impacted Soil Work Plan*, dated May 26, 2021 (Work Plan; RMD, 2021a) and the County of Santa Cruz (the County) approval letter, dated June 2, 2021. This Report was prepared in response to the County's letter dated December 15, 2021, which requested a revised report to address comments to the *Additional Soil Investigation Report and Human Health Screening Evaluation* (Report) dated October 15, 2021 (RMD, 2021b).

The Site is located in the Pogonip Open Space Preserve. The City leased approximately 9.5 acres in the lower meadow area of the preserve to the Homeless Garden Project (HGP), a non-profit organization, for conversion from recreational and natural open space to an agricultural and educational farm. In 2019, the City learned that a portion of the Site had been used as a skeet and trap shooting range between the 1930s and 1950s. Metals, primarily lead and to a lesser extent antimony, arsenic, copper, and zinc, are associated with shot, and polycyclic aromatic hydrocarbons (PAHs) are associated with clay targets. In 2019, a *Phase I Environmental Site Assessment* (Phase I; Weber, Hayes & Associates [WHA], 2019) identified the following two recognized environmental conditions (RECs):

- The historic operation of a skeet shooting range with confirmed elevated lead and PAH concentrations in shallow soil samples; and
- The presence of trash and debris primarily observed within the ravine of the lower meadow where homeless encampments have been established.

Based on the proposed land use by HGP, these RECs were investigated and the results were reported in the *Preliminary Endangerment Assessment Report* (PEA Report; RMD, 2020b). Based on the findings of the PEA Report, PAHs and select metals, primarily lead, were identified in HGP's proposed planting areas of the Site. PAHs have been adequately delineated at the Site.

_

¹ Note, the Site address changed from 333 Golf Club Drive to 501 Golf Club Drive in 2021.

1.1 Project Objective

The objective of this investigation was to delineate the horizontal and vertical extent of lead in shallow soil associated with the historic shooting range in areas not previously investigated at the Site.

1.2 Scope of Work

To meet this objective, the delineation investigation included the following scope of work:

- Field screening of surface and shallow soil samples for the presence of lead shot.
- Collection and laboratory analysis of soil samples for lead.
- Assess laboratory analytical results to determine the nature, concentration, and extent of lead at the surface and in shallow soil at the Site.
- Compare soil sample analytical results to human health and environmental screening levels presented in the Work Plan (RMD, 2021a).

This Report documents completion of the above-mentioned activities and considers results of this investigation to evaluate the nature and extent of lead and whether any corrective actions are warranted relative to the existing and proposed land-uses. Additionally, the Report includes an updated screening level evaluation for PAHs using data from the May 2020 investigation and development of screening levels for the hypothetical unauthorized camper receptor.

2.0 SITE BACKGROUND

2.1 Site Location and Description

The Site is identified as the Lower Main Meadow of the Pogonip Open Space Preserve in Santa Cruz, California (Figure 1). The Site is the southern portion of the larger Santa Cruz County Assessor's Parcel Number [APN] 001-211-01 (Figure 2), with the Site entrance located at 36.990364°N, 122.036831°W. The Site is currently undeveloped except for a series of dirt roads and hiking trails accessible from Golf Club Drive, which is located along the southern and western Site boundaries (Figure 2). The Site is divided into the east meadow, the west meadow, a ravine between the east and west meadows, the north orchard, and the Emma McCrary Trail Area (Figure 2). A 0.08-acre seasonal wetland has been identified in the northern portion of west meadow. The Site is bordered by additional open space and the Pogonip clubhouse to the northwest, additional open space and a former horse stable to the southwest, a forested slope to the east with a railroad line, Highway 9 and the San Lorenzo River beyond, and a plant nursery and Santa Cruz METRO office buildings to the south with commercial businesses beyond.

The California Department of Toxic Substances Control (DTSC) was the lead oversight agency during the PEA investigation described in the PEA Report. The County is the current lead oversight agency for the delineation activities described in this Report.

A record of environmental conditions at the Site (i.e., regulatory directives and correspondence, Site documents, and analytical data) may be obtained through a review of the case files for DTSC EnviroStor Database Number 60002874 at the following website: https://www.envirostor.dtsc.ca.gov/public/profile_report?global_id=60002874 (Site Code 202272).

2.2 Historical Land Use

The following summarizes the historical land use based on information presented in the Phase I:

- Beginning in approximately 1850, the area surrounding the Site was used for limestone mining and the production of lime;
- From approximately 1912 through 1986, the Site was part of a social club that included:
 - In 1912, the Site and surrounding open space were developed into a golf course and social club. The Pogonip clubhouse is located northeast of the Site;
 - In 1935, the golf course was turned into polo fields with horse stables located immediately off-Site to the west;

- In 1937, the polo club constructed a skeet shooting range in the west meadow between Golf Club Drive and the ravine;
- o In 1948, a shooting range with a "Remington electrical trap" was added adjacent to the existing skeet shooting range, and the grounds were leveled by grading;
- A 1956 aerial photograph of the Site shows the shooting range infrastructure removed and the area opened to rangeland;
- From approximately 1958 to 1967, the Site was used for cattle grazing; and
- o In 1987, the Pogonip clubhouse was posted as unsafe for occupancy.

2.3 Current Land Use

In 1989, the Site was acquired by the City and has since been maintained as recreational open space. A fire break is maintained along the eastern boundary of the Site. During Phase I activities, Site inspection observations included concrete shooting pads and clay target fragments in the west meadow. In addition, the presence of unauthorized camping and some trash and debris, including shopping carts and hypodermic needles, were observed largely in the ravine area. City staff perform homeless encampment clean-ups; fire prevention work, such as removing vegetation and clearing dead trees; and trail work along the existing trails.

2.4 Anticipated Land Use

Based on results of the PEA Report, the HGP may develop portions of the west meadow, east meadow, and north orchard classified as unrestricted land use into active farming land. The HGP has considered plans to fence off the unrestricted portions of the Site to delineate their planting areas. An Operation and Maintenance Plan and Development Plans for the Pogonip Farm and Garden propose a building complex, consisting of an administrative building, a pole barn, two greenhouses, and parking in the northeast portion of the west meadow along Golf Club Drive (HGP, 2017). In areas of the Site classified as restricted land use, the City has posted signs notifying the public of known shallow soil contamination in the area. In July 2021, HGP sent a letter to the Mayor and City Councilmembers requesting to relocate the site of the planned Pogonip Farm and Garden from the Lower Main Meadow to the Upper Main Meadow. The Upper Main Meadow is located near the Pogonip clubhouse, an area outside the hypothetical range of lead shot and clay targets that is not expected to be impacted by the former skeet and trap shooting use. The City is currently evaluating the possibility of relocating the farm to this recently proposed location. In unfarmed areas, the Site is and would continue to be used for outdoor

recreation (hiking and biking trails), natural resource and trail management, and homeless encampment clean-up activities.

2.5 Geological and Hydrogeological Setting

As described in the Phase I, grassland terraces are composed of fine-grained unconsolidated terrace deposits that overlie bedrock sandstones of the Santa Margarita Formation. Perched shallow groundwater supports seasonal wetlands and seeps. A 345-foot deep water supply well near the Pogonip clubhouse reported a depth to water of 128 feet below ground surface (bgs) in 1993. Previous investigations indicate shallow soil at the Site consist mainly of sandy silts with fine-grained sand to depths of 2 feet bgs.

2.6 Conceptual Shooting Range Contaminant Distribution

The types and distribution of contaminants associated with shooting ranges typically display a systematic pattern (Interstate Technology & Regulatory Council [ITRC], 2005). In general, metals, primarily lead and to a lesser extent antimony, arsenic, copper and zinc, are associated with shot, and PAHs are associated with clay targets. These materials are expected to be deposited on the surface or near surface.

Trap and skeet shooting ranges feature a fan-shaped clay target and shot fall zone radiating from the shooting pads. Although the distribution may vary, the following general dimensions relative to the shooting pads are hypothetically expected:

- 0 to 100 feet Spent cartridge cases and wads;
- 200 to 325 feet Clay target fragments; and
- 200 to 700 feet (skeet)/770 feet (trap) Shot fall zone, with the greatest anticipated shot density at 400 to 600 feet.

This conceptual distribution of contaminants was generally observed during the PEA investigation conducted in May 2020 (Section 2.7.3).

2.7 Previous Site Investigations

Between November 2018 and March 2021, soil samples were collected. Consistent with the anticipated land use and the PEA Report, the following soil screening levels (SLs) were compared with Site investigation results:

 <u>Background Concentrations for Metals</u> – DTSC (2015) recommends that metals detected at background (ambient) levels not be identified as chemicals of potential concern (COPCs) at a site. In accordance with the DTSC-approved *Preliminary Endangerment Assessment Work Plan* (RMD, 2020a), a 2009 Lawrence Berkeley National Laboratory (LBNL) study was used to identify acceptable background levels for metals except for arsenic, which used the background level for San Francisco Bay Region of 11 milligrams per kilogram (mg/kg, Duvergé, 2011). Table 1 of the PEA Report presents background levels for metals detected in soil.

- Risk-Based SLs The risk-based soil SLs include U.S. Environmental Protection Agency (USEPA) Regional Screening Levels (RSLs; USEPA, 2021) modified per DTSC Office of Human and Ecological Risk Human Health Risk Assessment (HHRA) Note Number 3 (HHRA Note 3; DTSC, 2020) in accordance with the PEA Manual (DTSC, 2015). The risk-based soil SLs were available for unrestricted residential and commercial/industrial receptors. Risk-based soil SLs for lead were developed separately, as described in the following bullet.
- Lead SLs Unlike other COPCs, the soil SL for lead is based on blood-lead models. Neither USEPA nor California Environmental Protection Agency (CalEPA) publishes toxicity values for lead. In the absence of toxicity values, noncarcinogenic effects from exposure to lead are evaluated by predicting blood lead concentrations using toxicokinetic modeling. This section describes the blood-lead models used to develop lead soil SLs for the hypothetical long-term receptors anticipated at the Site.
 - Future On-Site Unrestricted Receptor This receptor is a long-term receptor that includes unrestricted land use, which may include farming and gardening activities for the purpose of cultivating, consuming and/or selling produce. DTSC LeadSpread 8² is recommended by DTSC for evaluating lead exposure under unrestricted land use. This model is based on child exposures only and an exposure frequency of seven days per week. Based on this model, DTSC's soil SL for lead is 80 mg/kg (DTSC, 2020). The soil SL of 80 mg/kg represents a reasonably conservative soil SL to protect future on-Site unrestricted receptors (RMD, 2020b).
 - Future On-Site Commercial Worker Receptor This receptor is a long-term adult receptor, a full-time employee that is assumed to spend 250 days per year

RMD ENVIRONMENTAL SOLUTIONS, INC.

 $^{^2}$ The DTSC LeadSpread 8 model (DTSC, 2011) calculates several blood lead concentrations, including the median, 90th, 95th, 98th, and 99th percentile estimates for the predicted distribution. Additionally, the model calculates the concentration in exterior soil and interior dust that will result in a 90th percentile estimate of blood lead equal to the target increase in children's blood lead level of concern by 1 microgram per deciliter (μ g/dL; CalEPA benchmark incremental change criterion for lead).

working at the Site for 25 years. This receptor may spend the workday (8 hours per day) both indoors performing light office duties and outdoors performing moderate soil invasive activities in surface or near surface soil (e.g., maintenance or landscaping). For commercial worker exposure scenarios, DTSC recommends a modified version of USEPA's June 21, 2009 adult lead model (ALM; DTSC, 2011)³. Based on this model, DTSC's commercial soil SL for lead is 320 mg/kg (DTSC, 2020; RMD, 2020b).

Current/Future Recreational Trail User Receptor – This receptor is a long-term receptor that includes receptors using the Site for outdoor recreation (hiking and biking trails). This receptor is anticipated to be primarily an adult receptor; however, a child receptor may occasionally visit the Site during organized field trips or other visits accompanied by an adult. For this reason, the LeadSpread 8 model based on child exposures was used to estimate a soil SL for on-Site recreational trail user receptors. In the LeadSpread 8 model, DTSC indicates that non-residential scenarios may involve fewer than seven days per week for exposure frequency. Based on best professional judgement, to evaluate a recreational trail user scenario, the exposure frequency in the model was reduced from seven days per week to one day per week. The resulting soil SL for lead of 540 mg/kg represents a reasonably conservative soil SL to protect current/future on-Site recreational trail user receptors (RMD, 2020b)⁴.

The SLs for soil are shown on Tables 1 and 2. Unless otherwise specified, the results of the previous Site investigation activities are compared with the soil SLs and discussed below.

2.7.1 2018/2019 Soil Investigation

The HGP conducted agricultural soil testing and incorporated evaluation of the potential agricultural impacts of the lead associated with the historic shooting range (HGP, 2019). This evaluation indicated the following:

 Extractable lead concentrations ranging from 0.9 parts per million (ppm) to 89.8 ppm, which exceeded a laboratory-recommended threshold for safe agricultural use of 22 ppm; and

 $^{^3}$ The model calculates the concentration in exterior soil and interior dust that will result in a 90th percentile estimate of blood lead among fetuses of adult workers of 1 μ g/dL.

⁴ The soil SL for lead of 540 mg/kg for on-Site recreational trail user receptors was included in the Work Plan (RMD, 2021) and subsequently approved by the County in their approval letter, dated June 2, 2021.

Total sorbed lead concentrations ranging from 56.08 mg/kg to 145.86 mg/kg, which
were below a threshold of 400 mg/kg that would require implementation of modified
farming practices (HGP, 2019).

Based on these results, the City decided to conduct additional sampling at the Site.

2.7.2 February 2019 Soil Investigation

Soil samples were collected from 52 soil borings, each advanced to approximately 2 feet bgs, in the west meadow at the Site (Environmental Investigation Services, Inc., 2019). Twelve 4-part composite samples (B1 through B12) were collected from 48 borings at depths of approximately 0 to 0.5 foot bgs (surface) and 1.5 to 2 feet bgs (shallow). Additionally, one 4-part composite sample (B13) was collected from approximately 0 to 0.5 foot bgs. The surface composite samples were analyzed for select metals (total lead, arsenic, copper, and zinc), PAHs, and total petroleum hydrocarbons (TPH) as diesel and motor oil (with silica gel cleanup). The 1.5 to 2 feet bgs composite samples were analyzed for metals only. The 4-part composite sample results for surface soil at borings B1 (northwestern portion of the west meadow) and B3 (northern portion of the west meadow) reported lead concentrations exceeding the residential screening level of 80 mg/kg. Therefore, the four individual samples for these locations were analyzed for lead and reported lead concentrations exceeding the residential (unrestricted) screening level of 80 mg/kg. Samples with PAH concentrations exceeding screening levels were limited to surface soil in borings B5 and B7 (eastern portion of the west meadow) and borings B6 and B11 (central portion of the west meadow, near a former shooting pad location). Data summary tables for this investigation are provided as Tables A1 and A2 of Appendix A.

Based on the findings of the 2019 investigation, the following data gaps were identified:

- The magnitude of select metals (lead, antimony, arsenic, copper, zinc) concentrations in unsampled areas within the planned planting footprint in the west meadow;
- The extent and magnitude of select metals (lead, antimony, arsenic, copper, zinc) concentrations within the planned planting footprint in the north orchard and east meadow where higher shot fall density is anticipated;
- The extent and magnitude of PAH concentrations within the planned planting footprint in the western portion of the north orchard and east meadow; and
- The vertical extent of PAH concentrations that exceed screening levels in the west meadow and other areas.

2.7.3 May 2020 Soil Investigation

To address the data gaps identified during the 2019 investigation, soil samples were collected from 71 soil borings located across the Site, each advanced to approximately 2 feet bgs (RMD, 2020b). Twenty-six soil borings were located in the west meadow, 12 soil borings were located in the north orchard, and 33 soil borings were located in the east meadow. Soil sample locations were selected based on the planned farm and garden areas at the Site, findings of the 2019 soil investigation, and hypothetical shot and clay target fragment fall zones. During boring advancement, soil at approximate 6-inch intervals (0-0.5 foot bgs, 0.5-1.0 foot bgs, and 1.0-1.5 foot bgs [collectively referred to as the "surface"], and 1.5-2.0 foot bgs [shallow]) was visually inspected and logged. Soil from each boring location was screened with a X-Ray Fluorescence (XRF) analyzer to evaluate the vertical distribution of lead in the field. Two soil samples were collected from each boring location based on field observations. The selected soil samples were analyzed for select metals (lead, antimony, arsenic, copper, and zinc) and PAHs according to field observations and XRF screening (for lead) as described in the PEA Report. Data summary tables for this investigation are provided as Tables A3 and A4 of Appendix A.

Lead concentrations exceeded the commercial worker soil SL of 320 mg/kg and the recreational trail user soil SL of 540 mg/kg at one location south of the southern shooting range in the west meadow, in the western portion of the north orchard along the trail connecting the west meadow to the east meadow, and in the south and west portions of the east meadow along the ravine.

PAH concentrations exceeded one or more soil SLs at eight boring locations in the west meadow. As mentioned above, the extent of PAHs in soil have been delineated to the extent necessary.

Based on the findings of the 2020 investigation, the following data gaps were identified:

- The extent of lead concentrations near the north orchard along the trail connecting the west meadow to the east meadow:
- The extent of lead concentrations within the sloped ravine area between the west meadow and east meadow; and
- The extent of lead concentrations along the recreational trails located south of the east meadow (Emma McCrary Trail Area).

2.7.4 December 2020 Site Visit

On December 15, 2020, RMD, City, and County personnel conducted a Site visit to review previous sampling locations where lead concentrations exceeded the recreational trail user soil SL, discuss potential delineation sampling locations, and evaluate potential access issues.

The findings of the Site visit included:

- Two arcs of concrete pads, which are interpreted as the shooting pads for the historic trap and skeet ranges, were further observed in the central portion of the west meadow;
- Vegetation covers most of the Site with homeless encampments further observed in several wooded areas including the ravine area; and
- The southern side of the east meadow, the ravine area, and public recreation trails in the southeastern portion of the Site and connecting the west meadow to the east meadow had not been adequately delineated for lead concentrations in shallow soil.

The hypothetical fan-shaped clay target and shot fall distribution associated with the orientation of the shooting pads is depicted on Figure 2. These features are augmented with the prior and proposed soil sampling locations on Figure 3.

Based on previous investigations and the Site visit, the County determined that further investigation is needed to fully delineate the lateral and vertical extent of lead concentrations in shallow soil near the southern side of the east meadow, in accessible portions of the ravine, and along select public recreation trails in the southeastern portion of the Site.

2.7.5 March 2021 Soil Investigation

Based on findings of the PEA Report, WHA collected shallow soil samples from 12 soil borings located along the trail connecting the west meadow to the east meadow near the north orchard to delineate the extent of lead concentrations near boring NO-3 and to support the use of this trail (WHA, 2021). At each boring, soil samples were collected at the surface and at approximately 1.5 feet bgs and analyzed for lead. The reported lead concentrations of up to 208 mg/kg were below the commercial soil SL of 320 mg/kg and the recreational trail user soil SL of 540 mg/kg. Based on these results, additional soil investigation is no longer necessary in this portion of the Site. A data summary table for this investigation is provided as Table A5 of Appendix A.

2.7.6 Summary of COPCs

Based on the sample-by-sample comparison with background levels and risk-based soil SLs for the PEA investigation (RMD, 2020b), the following metals and PAHs were identified as COPCs in each area:

Summary of Chemicals of Potential Concern (COPCs)			
Area	Unrestricted Land Use		Commercial Land Use
West Meadow	AntimonyArsenicCopperLeadZinc	 Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-c,d)pyrene Naphthalene 	 Benzo(a)pyrene Lead Benzo(b)fluoranthene Dibenz(a,h)anthracene
North Orchard	• Lead		• Lead
East Meadow	• Lead		• Lead

Based on the findings of the PEA Report, PAHs and select metals, primarily lead, were identified in proposed planting areas of the Site, as described in the following sections.

2.7.6.1 Metals

A total of 103 samples were analyzed for metals, including 76 surface samples and 27 shallow samples. Based on comparison of detected concentrations with background levels and unrestricted and/or commercial soil SLs, select metals were identified as COPCs at the Site. Antimony, arsenic, copper, and zinc were only detected at concentrations above unrestricted soil SLs in soil sample WM-DG-13-1.5' in the west meadow. The extent of antimony, arsenic, copper, and zinc concentrations above unrestricted soil SLs are delineated and determined to be localized at a single sample location, where a shell casing was observed, and does not indicate a significant release area. However, lead was identified as a COPC in all three areas sampled during the PEA investigation. Based on the locations of lead concentrations above the recreational trail user soil SL of 540 mg/kg (Table 1, Figures 3 and 4), further delineation of the horizontal and vertical extent of lead in shallow soil in areas not previously investigated at the Site was warranted. This Report presents the results of additional delineation activities for lead.

2.7.6.2 Polycyclic Aromatic Hydrocarbons

A total of 48 samples were analyzed for PAHs, including 40 surface samples and 8 shallow samples. PAH concentrations exceeded one or more unrestricted and/or commercial soil SL at eight boring locations in the west meadow only. Benzo(a)pyrene and dibenz(a,h)anthracene, with or without benzo(a)anthracene, benzo(b)fluoranthene, indeno(1,2,3-c,d)pyrene, and naphthalene, exceeded their soil SLs near the historic shooting ranges in the west meadow. PAHs were not detected above reporting limits in the north orchard or east meadow.

Based on this evaluation of potential human health risks from exposure to PAHs in the west meadow of the Lower Main Meadow, Pogonip Open Space (Appendix B), the noncancer adverse health effects or hazard index (HI) does not exceed the USEPA and CalEPA target level of one and the excess cancer risk is within CalEPA's risk management range of 1 x 10⁻⁶ to 1 x 10⁻⁴. The cumulative excess cancer risk of 4 x 10⁻⁶ slightly exceeds 1 x 10⁻⁶, the most stringent end of the risk management; but the individual excess cancer risks for PAHs detected in soil did not exceed 1 x 10⁻⁶, except for benzo(a)pyrene with an individual risk of 1.4 x 10⁻⁶. According to USEPA (1989), cancer risk and hazard index should be expressed using one significant figure. Given the uncertainty in both exposure factors and toxicity data, expressing cancer risk and hazard index with more than one significant figure would imply greater precision than warranted. Therefore, benzo(a)pyrene does not pose a significant human health risk above acceptable thresholds.

Since there are no published soil SLs for recreational receptors, Site-specific risk-based recreational trail user soil SLs were developed for use at the Site. Using the HI and excess cancer risk estimates, soil exposure point concentrations (EPCs), and USEPA and CalEPA target HI and excess cancer risk, risk-based soil SLs were estimated for PAHs detected in soil (Appendix B). The recreational trail user soil SLs for PAHs detected in shallow soil at the Site are presented in Appendix B.

Based on comparison of detected concentrations with recreational trail user soil SLs, PAHs were identified as COPCs at four boring locations in the west meadow only (Table 2, Figure 4). Benzo(a)pyrene and/or dibenz(a,h)anthracene exceeded the recreational trail user soil SLs near the historic shooting ranges at borings WM-C-9A, WM-DG-6, WM-DG-11, and WM-DG-13. PAHs were not detected above reporting limits in the north orchard or east meadow. The extent of PAHs in the west meadow have been delineated to the extent necessary. Additional evaluation of PAHs and a sample-by-sample comparison with background levels and risk-based soil SLs was included in the PEA Report.

3.0 HUMAN HEALTH CONCEPTUAL SITE MODEL

To develop a conceptual understanding of the Site, information regarding potential chemical source, chemical release, and transport mechanisms; locations of potentially exposed human receptors; and potential exposure routes were assessed. This information was previously presented in the PEA Report. Based upon comments from the County, the human health conceptual site model (CSM) was updated to include the hypothetical recreational trail user receptor and hypothetical unauthorized camper receptor. The updated CSM is outlined schematically on Figure 5 and discussed below.

The CSM associates sources of chemicals with potentially exposed human receptors and associated complete exposure pathways. In this way, the CSM assists in quantifying potential impacts to human health. As defined by USEPA (1989), the following four components are necessary for a chemical exposure pathway to be considered complete and for chemical exposure to occur:

- A chemical source and a mechanism of chemical release to the environment;
- An environmental transport medium (e.g., soil) for the released chemical;
- A point of contact between the contaminated medium and the receptor (i.e., the exposure point); and
- An exposure route (e.g., incidental ingestion of soil) at the exposure point.

As described below, these components provide a basis for the CSM.

3.1 Chemical Source, Release, and Transport

To evaluate the first two components necessary for a complete exposure pathway, chemical properties of the detected chemicals and the physical characteristics of the Site were reviewed to identify factors that might allow the release and transport of chemicals. As discussed in Section 2.0, the potential source of impacts at the Site is related to the deposition of shot and clay target fragments. Based on historic land use as a shooting range and previous Site investigations, the COPCs include metals and PAHs, which tend to adsorb to soil particles and typically do not readily dissolve into water or volatilize into ambient air. Therefore, this CSM focuses on direct contact exposure routes to metals and PAHs in on-Site soil.

3.2 Potential Receptors

The third component necessary for an exposure pathway to be complete is identification of potential receptors at the Site based on anticipated land use. Based on the anticipated future land use as an agricultural and educational farm with a commercial building complex, the following hypothetical receptors were considered in this CSM:

- Future On-Site Unrestricted Receptor; and
- Future On-Site Commercial Worker Receptor.

Based on current and anticipated future land use as a recreational area, the following hypothetical receptors were considered in this CSM:

- Current/Future On-Site Recreational Trail User Receptor; and
- Current/Future On-Site Unauthorized Camper Receptor.

As stated in the PEA Report, a future on-Site construction worker receptor will be present during redevelopment of the Site; but this receptor will be a short-term receptor, performing activities subject to applicable administrative controls (e.g., Site Management Plan [SMP], Site Health and Safety Plan [HASP], and best management practices [BMPs]). This receptor is expected to be a short-term outdoor worker (i.e., 2 weeks to 1 year) for a single construction or development project at the Site. The exposures for a construction worker receptor are expected to be limited in comparison to long-term worker receptors.

The hypothetical on-Site receptors included in the CSM are described in more detail below.

3.2.1 Hypothetical On-Site Unrestricted Receptor

The hypothetical future on-Site unrestricted receptor was included to evaluate an unrestricted land use scenario, which is considered the most protective scenario for potential on-Site receptors including farm and garden workers. This receptor is a long-term receptor (i.e., greater than 7 years [USEPA, 1989]) that spends 350 days per year at the Site for a period of 26 years (as both a child [6 years] and an adult [20 years]). The unrestricted land use may include farming and gardening activities for the purpose of cultivating, consuming and/or selling produce (RMD, 2020b).

3.2.2 Hypothetical On-Site Commercial Worker Receptor

The hypothetical future on-Site commercial worker receptor is a long-term adult receptor. This receptor is a full-time employee that is assumed to spend 250 days per year working at the Site for 25 years. This receptor may spend the workday (8 hours per day) both indoors performing light office duties and outdoors performing moderate soil invasive activities in surface or near surface soil (e.g., maintenance or landscaping).

3.2.3 Hypothetical On-Site Recreational Trail User Receptor

The recreational trail user receptor is a long-term receptor that may include visitors using the recreational trails at the Site. Based on best professional judgment, this receptor is assumed to visit the Site one day per week (52 days per year) for a period of 26 years (as both a child [6 years] and an adult [20 years]). Potential exposures for this receptor are expected to occur from time spent outdoors only (8 hours per day). Typically, a recreational trail user that frequently visits a site would spend up to 4 hours per day on the trails (Gobster, 2005). It is conservative to assume that the recreational trail user that frequently visits the Site for 52 days a year will be using the trails for 8 hours a day at each visit, considering only short segments of the greater Pogonip Open Space trail system intersect the lead and PAH impacted areas of the Site.

3.2.4 Hypothetical On-Site Unauthorized Camper Receptor

Camping is prohibited at the Site and the exposure pathways for this receptor are incomplete due to the implementation of engineering controls to mitigate unauthorized camping at the Site. However, at the request of the County, the on-Site unauthorized camper receptor was included in the CSM⁵. Since camping is prohibited, it is unknown how long the average unauthorized camper receptor stays at the Site. Based on best professional judgment, two exposure frequencies were considered. For one exposure scenario, this receptor is assumed to camp at the Site for 14 days per year. This is consistent with the Bureau of Land Management (BLM) yearly recreational exposure frequency for a recreational visitor, which includes a range of possible activities including camping (BLM, 2017). For the second exposure scenario, this exposure frequency was doubled to be 28 days per year. This receptor is a long-term receptor for a period of 26 years (as both a child [6 years] and an adult [20 years]). Potential exposures

⁵ In addition, the County requested the development of risk-based soil SLs for the hypothetical unauthorized camper receptor. These soil SLs are presented in Appendix B.

for this receptor are expected to occur from time spent camping outdoors only (24 hours per day).

3.3 Complete Exposure Pathways

The fourth and final component, a complete exposure pathway (i.e., route of exposure) is discussed in combination with the third component (i.e., presence of receptors at an exposure point) to define those exposure pathways considered to be complete and significant for the future on-Site receptors. The exposure pathways assumed to be complete and significant for the hypothetical current/future on-Site receptors includes the following:

- Incidental ingestion of soil;
- Dermal contact with soil; and
- Inhalation of fugitive dust.

As a working farm and garden, it is assumed that the future on-Site farm and garden worker receptor will grow fruits and vegetables to consume and/or sell to the public. The produce sourced from the Pogonip Farm and Garden will only account for a portion of a potential receptors diet; therefore, is not likely a significant exposure pathway. Evaluation of the exposure pathways listed above for an unrestricted land use scenario are considered adequately protective for the proposed future land use at the Site (RMD, 2020b).

3.4 Summary of CSM

This CSM provides a scientifically defensible basis for the selection of potential hypothetical receptors and the most likely ways they might be exposed to chemicals at the Site (Figure 5). The future on-Site unrestricted and commercial worker receptors were evaluated in the PEA Report and are not considered further in this Report. On-Site camping is prohibited, but at the request of the County the on-Site unauthorized camper receptor was considered and is included in Appendix B. Based on the approved Work Plan scope, the remainder of this report focuses on the on-Site recreational trail user receptor. Due to the presence of COPCs in soil at the Site, further evaluation of potential exposure to COPCs via incidental ingestion of soil, dermal contact with soil, and inhalation of fugitive dust was performed, as described in the following sections.

4.0 SCOPE OF WORK

The following sections describe the pre-field activities, sampling, sample handling, decontamination, and borehole completion procedures.

4.1 Pre-field Activities

The following pre-field activities were conducted prior to mobilizing for the sampling event.

4.1.1 Site Health and Safety Plan

The Site-specific HASP was updated for the planned field activities. Field personnel were required to follow the procedures set forth in the HASP. Based on historical Site information, the work was completed using Occupational Safety and Health Administration (OSHA) Level D personal protective equipment (PPE).

4.1.2 Site Reconnaissance

On July 26, 2021 and January 6, 2022, RMD and City personnel conducted Site visits to evaluate potential access issues to the proposed sample locations and mark out the locations with survey stakes. Based on these Site visits, several proposed sample locations were shifted.

4.1.3 Borehole Clearance

To confirm the absence of obstructions and as required, the Site was marked with white paint and survey stakes. At least 72 hours before delineation sampling activities were conducted, Underground Services Alert (USA) was notified to mark the locations of potential subsurface utilities beneath the Site.

4.2 Soil Screening and Sampling Locations and Depths

In August 2021 and January 2022, soil samples were collected from 32 boring locations across the Site (Figures 3 and 4) as follows:

- Seven soil borings were located along the southwestern portion of the east meadow;
- Fourteen soil borings were located throughout the ravine;
- Seven soil borings were located in the Emma McCrary Trail Area in the southeastern portion of the Site;
- Two soil borings were located southwest of the north orchard; and

Two soil borings were located northwest of the west meadow.

These soil boring locations were needed to fully delineate the lateral and vertical extent of lead concentrations in shallow soil based on findings of previous soil investigations and hypothetical shot fall zones. Soil boring locations and rationale are presented below in Table A.

Table A Soil Sample Locations and Rationale			
Area	Sampling Location	Rationale	
East Meadow	EM-34 through EM-40	Evaluate lateral and vertical extent of lead concentrations between the southern portion of the east meadow and ravine	
Ravine	R-1 through R-14	Improve data density and evaluate lateral and vertical extent of lead concentrations in the ravine area between the east and west meadows	
Emma McCrary Trail Area	T-1 through T-7	Improve data density and evaluate lateral extent of lead concentrations south of the east meadow	
North Orchard	NO-13 and NO-14	Evaluate lateral extent of lead concentrations northwest of borings NO-1, NO-2, and NO-4	
West Meadow	WM-16 and WM-17	Evaluate lateral extent of lead concentrations northwest of borings WM-C-1 and WM-DG-1	

During field activities, soil boring locations were measured and recorded using a Garmin eTrex 20x handheld global positioning system (GPS) navigator, which has an estimated GPS location accuracy of around 10 feet, 95% of the time, according to the manufacturer. The GPS coordinates of each boring location are included on the field sampling forms presented in Appendix C.

4.3 Soil Logging, Screening, Sampling, and Laboratory Analysis

The following presents the soil logging, screening, sampling and laboratory analysis procedures. Laboratory analyses that were performed by Pace Analytical National Center for Testing & Innovation in Mt. Juliet, Tennessee (Pace), a California-certified laboratory.

4.3.1 Soil Logging

The soil borings were advanced using a hand auger to an approximate depth of 2 feet bgs. During boring advancement, soil at approximate 6-inch intervals (0-0.5 foot bgs, 0.5-1.0 foot bgs, 1.0-1.5 foot bgs, and 1.5-2.0 foot bgs) was segregated and placed in a clean resealable plastic bag. Soil was visually inspected and logged using the Unified Soil Classification System (USCS). Visual observations were recorded on field forms and are presented in Appendix C.

4.3.2 Soil Screening

Visual Observations: Soil at the surface and from the four 6-inch intervals was visually inspected for evidence of shot fragments. Shot fragments were not observed at any of the boring locations.

XRF Screening: Soil from the four 6-inch intervals was screened in general accordance with USEPA Method 6200 using a handheld Olympus Vanta XRF analyzer to evaluate the vertical distribution of lead in the field. A summary of the XRF measurements includes the following:

- Lead concentrations of more than 1,000 ppm were measured at the following boring locations and depths:
 - EM-35 at 0-0.5 foot bgs;
 - EM-36 at 0-0.5 foot bgs;
 - o R-4 at 0-0.5 foot bgs; and
 - o R-14 at 0-0.5 foot bgs.
- Lead concentrations between 500 ppm and 1,000 ppm were measured at the following boring locations and depths:
 - o EM-34 at 0.5-1.0 foot bgs;
 - EM-37 at 0-0.5 foot bgs;
 - EM-39 at 0-0.5 foot bgs;
 - o R-3 at 0-0.5 foot bgs;
 - o R-6 at 0-0.5 foot bgs; and
 - R-13 at 0-0.5 foot bgs.

The handheld XRF analyzer was factory calibrated. At the beginning of each day, the XRF analyzer was allowed to warm up for 15 to 30 minutes before analysis of samples and checked against a manufacturer-provided standard sample. XRF measurements for each boring location and depth were recorded on field forms (Appendix C). The downloaded XRF data are presented in Appendix D.

4.3.3 Soil Sample Selection

Two soil samples were collected from each boring location as follows:

- Of the 0-0.5 foot bgs, 0.5-1.0 foot bgs, and 1.0-1.5 foot bgs aliquots, the "surface" soil sample was selected based on the 6-inch soil interval with the highest XRF reading. In the absence of field screening indicators (i.e., shot fragments or elevated XRF readings), the 0-0.5 foot bgs soil interval was collected; and
- The 1.5-2.0 foot bgs soil interval (the "shallow" soil sample).

4.3.4 Soil Sampling Procedures

Soil samples were collected in laboratory-supplied glass jars. The sample containers were labeled, placed in sealable, plastic bags, and stored in a chilled cooler for transportation to Pace, under standard chain-of-custody procedures.

4.3.5 Soil Analyses

At borings R-1 through R-14, T-1 through T-3, NO-13 and NO-14, and WM-16 and WM-17 where XRF readings for lead were less than 250 mg/kg, soil samples were collected and placed on hold at the laboratory pending analysis of the initial soil samples.

At borings EM-34 through EM-40 and at borings R-1 through R-14, T-1 through T-3, NO-13 and NO-14, and WM-16 and WM-17 where XRF readings for lead were greater than 250 mg/kg, soil samples were analyzed at the laboratory. Additionally, at borings where XRF readings were less than 250 mg/kg but were located adjacent to borings with elevated lead concentrations, soil samples were analyzed at the laboratory to define lateral extent of lead in soil. The samples were analyzed for lead using USEPA Method 6020. Prior to analysis, samples were sieved at the laboratory using a No. 10 sieve.

⁶ During the 2019 and 2020 soil investigations, the 0-0.5 foot bgs samples was referred to as the surface soil sample. This Report applies "surface" soil sample to the 6-inch interval selected for analysis from the upper 1.5 feet bgs.

Laboratory analytical reports are presented in Appendix E. Analytical results are summarized on Table 1 and in Section 5.0.

4.4 Borehole Completion

Following completion of soil screening and sampling activities, each boring was backfilled to the surface with soil cuttings.

4.5 Decontamination Procedures

Disposable equipment intended for one-time use was packaged for appropriate disposal. Reusable augering and sampling devices that were in contact with potentially contaminated soil were decontaminated between each boring location using the following procedures:

- 1. Knock off loose soil with a brush;
- 2. Wash with non-phosphate detergent and tap water;
- 3. Rinse with tap-water;
- 4. Rinse with distilled water; and
- 5. Set on clean surface to air dry.

Decontamination was repeated if observable or suspected organic material remained on the sampling equipment.

4.6 Investigation-Derived Waste Handling

The investigation-derived waste (IDW) generated during the field activities included several gallons of decontamination water with phosphate free soap. The IDW water was discharged to the ground and left to evaporate on Site.

4.7 Field Variances

Following review of XRF readings, soil samples were collected from two additional borings located west of boring R-4 that were not proposed in the Work Plan. The two additional borings (R-13 and R-14) were each advanced to approximately two feet bgs and soil samples were selected using the same criteria described above.

5.0 HUMAN HEALTH SCREENING EVALUATION OF LEAD ANALYTICAL RESULTS

Based on the approved Work Plan scope, the locations of lead concentrations above the recreational trail user soil SL of 540 mg/kg (Table 1, Figures 3 and 4) were delineated further. In accordance with the methods and procedures described in Section 4.3, a total of 46 samples⁷ were analyzed for lead. Consistent with the approved Work Plan scope, the human health screening evaluation (HHSE) compared the lead results to the recreational trail user soil SL of 540 mg/kg. In addition to a point-by-point screening level evaluation, the soil data were evaluated separately for each designated use area (i.e., west meadow, east meadow, north orchard, ravine, recreational trail). Table 1 summarizes the analytical results and presents a point-by-point screening level evaluation, highlighting any lead concentrations that exceed the recreational trail user soil SL of 540 mg/kg. The laboratory analytical results are provided in Appendix E. Figure 3 depicts the locations of soil samples analyzed for lead with concentrations exceeding the recreational trail user SL shown and highlighted.

This HHSE was prepared in general accordance with the HHSE for lead presented in the PEA Report. This HHSE was conducted to further evaluate potential exposures associated with the anticipated future land uses to identify the need for any remediation, mitigation, or engineering controls to adequately protect human health. The anticipated future land uses include the continuation of recreational trail use, natural resource and trail maintenance, and a planned building complex as part of an agriculture farm and garden (i.e., perennial orchards and row crops) in relatively flat portions of the Site. The potential source of soil impacts at the Site is related to the deposition of lead shot fragments based on former land use as a shooting range.

It is unlikely that a potential receptor will spend the entire exposure duration (i.e., years) residing over maximum detected concentrations in soil. Therefore, for lead in soil, it is relevant and appropriate to statistically evaluate the soil data separately within each designated use area for the purpose of making risk management decisions. Consistent with USEPA (1989) procedures, when evaluating a reasonable maximum exposure scenario, the lesser of the maximum detected concentration and the 95-percent upper confidence limit of the mean concentration (95UCL)⁸

⁷ Sample EM-35-2' initially reported a lead concentration of 5,810 mg/kg and was reanalyzed to confirm the result. The reanalyzed sample reported a lead concentration of 198 mg/kg.

⁸ A USEPA software package, ProUCL Version 5.1, was used to estimate the 95UCL. The ProUCL software makes recommendations for estimating UCLs and was developed as a tool to support risk assessment.

will be selected as the appropriate soil EPC for each designated use area and compared to the recreational trail user soil SL of 540 mg/kg.

The HHSE for lead concentrations detected in soil for each designated use area are described below.

5.1 Analytical Summary

East Meadow

Based on soil data collected during the August 2021 investigation, lead was detected above laboratory reporting limits (RLs) in each of the 14 samples analyzed at concentrations ranging from 323 mg/kg to 2,090 mg/kg in the surface samples and from 14.7 mg/kg to 220 mg/kg in the shallow samples. Lead concentrations exceeded the soil SL of 540 mg/kg in four surface samples and none of the shallow samples.

When considering the soil data collected during the May 2020 and August 2021 investigations for the east meadow, the 95UCLs for surface and shallow soil samples were 702 mg/kg and 92 mg/kg, respectively (Appendix F). The 95UCLs were less than the maximum detected concentrations for surface and shallow soil samples; therefore, 95UCLs were selected as the appropriate EPC for comparison with the soil SL. The lead EPC for surface soil exceeded the soil SL of 540 mg/kg and the lead EPC for shallow soil did not exceed the soil SL.

Ravine

Based on soil data collected during the August 2021 investigation⁹, lead was detected above RLs in each of the 24 samples analyzed at concentrations ranging from 9.86 mg/kg to 1,600 mg/kg in the surface samples and from 6.59 mg/kg to 341 mg/kg in the shallow samples. Lead concentrations exceeded the soil SL of 540 mg/kg in five surface samples and none of the shallow samples.

The 95UCLs for surface and shallow soil samples were 884 mg/kg and 170 mg/kg, respectively (Appendix F). The 95UCLs were less than the maximum detected concentrations for surface and shallow soil samples; therefore, 95UCLs were selected as the appropriate EPC for comparison with the soil SL. The lead EPC for surface soil exceeded the soil SL of 540 mg/kg and the lead EPC for shallow soil did not exceed the soil SL. At two borings (R-8 and R-12), XRF readings ranged from 28 ppm to 98 ppm and soil samples were not analyzed at the laboratory.

Emma McCrary Trail Area

_

⁹ The ravine area was not sampled during previous Site investigations.

Lead was detected above RLs in each of the eight samples collected and analyzed from the Emma McCrary Trail Area at concentrations ranging from 153 mg/kg to 474 mg/kg in the four surface samples and 7.07 mg/kg to 9.42 mg/kg in the four shallow samples. Lead concentrations did not exceed the soil SL of 540 mg/kg 10 .

At three borings (T-1, T-2, and T-4), XRF readings ranged from 6 ppm to 48 ppm and soil samples were not analyzed at the laboratory.

North Orchard

Based on soil data collected during the August 2021 investigation, XRF readings ranged from 3 ppm to 56 ppm at borings NO-13 and NO-14. The corresponding samples were not analyzed for lead.

When considering the soil data collected during the May 2020 and August 2021 investigations for the north orchard, the 95UCLs for surface and shallow soil samples were 312 mg/kg and 32 mg/kg, respectively (Appendix F). The 95UCLs were less than the maximum detected concentrations for surface and shallow soil samples; therefore, 95UCLs were selected as the appropriate EPC for comparison with the soil SL. The lead EPCs for surface and shallow soil did not exceed the soil SL of 540 mg/kg.

West Meadow

Based on soil data collected during the August 2021 investigation, XRF readings ranged from 3 ppm to 133 ppm at borings WM-16 and WM-17. The corresponding samples were not analyzed for lead.

When considering the soil data collected during the May 2020 and August 2021 investigations for the west meadow, the 95UCLs for surface and shallow soil samples were 163 mg/kg and 34 mg/kg, respectively (Appendix F). The 95UCLs were less than the maximum detected concentrations for surface and shallow soil samples; therefore, 95UCLs were selected as the appropriate EPC for comparison with the soil SL. The lead EPCs for surface and shallow soil did not exceed the soil SL of 540 mg/kg.

5.2 Findings

The following summarizes the findings of the field sampling and laboratory analysis:

¹⁰ Soil samples were not collected from the Emma McCrary Trail Area during previous Site investigations. Since maximum detected lead concentrations were below the soil SL of 540 mg/kg and the analytical data set only included 8 samples, a 95UCL was not estimated.

• Lead shot fragments were not observed during field screening of soil samples. As shown on the graph below, XRF readings exhibit a favorable correlation with lead concentrations in associated sieved soil samples. The absence of observed shot fragments and favorable correlation between XRF readings and lead concentrations in sieved soil samples suggest that the shot has dissolved and associated metals have sorbed to soil during the more than 60 years since deposition.

Lead concentrations indicated the following:

East Meadow

Lead exceeded the recreational trail user soil SL in surface samples collected from the southwestern portion of the east meadow along the border with the ravine. Lead did not exceed the soil SL in shallow samples collected from the east meadow. In the east meadow, lead concentrations above the soil SL are delineated by borings EM-6, EM-17, EM-18, and EM-19 to the north, borings EM-20, EM-22, and EM-39 to the east, borings EM-38 and EM-40 to the south, and borings R-2, R-5, R-7, R-10, and R-11 to the west.

Ravine

Lead exceeded the soil SL in surface samples collected from the northwestern and eastern portions of the ravine. Lead did not exceed the soil SL in shallow samples collected from the ravine. In the northwestern portion of the ravine, lead concentrations above soil SL are delineated by borings B-7, B-8, B-9, and R-1 to the north, borings R-2 and R-5 to the east, borings R-9 and WM-C-4 to the south, and borings B-5 and B-6 to the west. In the ravine, lead concentrations above the soil SL are delineated by borings EM-3, EM-4, and EM-5 to the north, borings EM-6, EM-19, EM-20, EM-22, and EM-39 to the east, borings R-7 and R-11 to the south, and borings R-2, R-5, and R-10 to the west.

Emma McCrary Trail Area

Based on lead concentrations at borings T-3, T-5, T-6, and T-7 and XRF readings at borings T-1, T-2, and T-4 lead did not exceed the soil SL in samples collected in this area.

North Orchard

Based on XRF readings at borings NO-13 and NO-14, lead did not exceed the soil SL in samples collected southwest of the north orchard. In the north orchard, the lead concentration above the soil SL at boring NO-3 is delineated by boring NO-4 to the north, boring B-7 to the east, boring B-6 to the south, and borings NO-1 and NO-2 to the west.

West Meadow

Based on XRF readings at borings WM-16 and WM-17, lead did not exceed the soil SL in samples collected northwest of the west meadow. In the west meadow, the lead concentration above the soil SL at boring WM-DG-13 is delineated by boring WM-C-9(A) to the north, borings WM-C-10 and WM-DG-15 to the east, boring WM-C-6 to the south, and boring WM-DG-14 to the west.

Based on findings of this Report and previous Site investigations, lead concentrations in soil are adequately delineated laterally and vertically and lead concentrations above the recreational trail user SL are limited to surface soil in previously identified areas, as described above.

6.0 CONCLUSIONS

As presented herein, lead and PAHs associated with shot and clay target deposition in soil from historic shooting range activities have been identified and adequately delineated at the Site. COPCs identified in prior investigations include select metals, primarily lead, and PAHs. The HHSE was revised to further characterize risk and evaluate lead concentrations above the recreational trail user SL.. The findings of the HHSE indicate that lead concentrations above the recreational trail user SL are limited to surface soil at the Site, as follows and displayed on Figures 3 and 4¹¹:

- East Meadow Lead concentrations exceeded the soil SL in surface samples collected from the southwestern portion of this area.
- Ravine Lead concentrations exceeded the soil SL in surface samples collected from the northwestern and eastern portions of this area.
- North Orchard The lead concentration exceeded the soil SL in the surface sample collected from boring NO-3, in the southwestern portion of this area.
- West Meadow The lead concentration exceeded the soil SL in the surface sample collected from boring WM-DG-13, in the southern portion of this area.

Lead concentrations did not exceed the recreational trail user SL in samples collected in the Emma McCrary Trail Area.

The findings of the HHSE indicate that PAH concentrations above the recreational trail user SLs are limited to soil in the west meadow at the Site, as follows and displayed on Figure 4¹³:

 West Meadow – PAH concentrations exceeded the soil SLs in the surface samples collected from borings WM-C-9A, WM-DG-11, and WM-DG-13; and in the shallow sample collected from boring WM-DG-6 in the central portion of this area near the former shooting pads.

PAH concentrations did not exceed the soil SLs in samples collected in the north orchard and east meadow. PAHs were not analyzed in soil samples collected from the ravine or Emma McCrary Trail Area.

¹¹ Figure 6 shows areas where lead and PAH concentrations exceeded the soil SLs for unrestricted land use.

Based on our evaluation of the Site conditions, consideration of the following activities is recommended:

- Prepare a draft Covenant and Environmental Restriction to establish the following use restrictions and controls for the Site:
 - Restrict land use in areas where COPCs may pose a human health risk at the Site (i.e., modify the proposed farm and garden development plan to restrict access to areas where soil samples exceed unrestricted SLs); and
 - o Implement engineering controls (e.g., soil amendments or fence and post notices) and remediate (e.g., surface soil excavation and on-Site burial or off-Site disposal) in areas where COPC concentrations exceed SLs for the current and proposed land uses to reduce potential exposures.
 - o Implement engineering controls to mitigate unauthorized camping at the Site.
- Prepare a Soil Management Plan to provide guidance for working around and handling potentially impacted soil encountered during Site activities.

7.0 LIMITATIONS

This document was prepared for the exclusive use of the City and County for the express purpose of complying with a client or regulatory directive for environmental investigation or restoration. RMD has used professional judgment to present the findings and opinions of a scientific and technical nature. The opinions expressed are based on the conditions of the Site existing at the time of the field investigation, current regulatory requirements, and any specified assumptions. The presented findings and recommendations in this report are intended to be taken in their entirety to assist City and County personnel in applying their own professional judgment in making decisions related to the property. No warranty or guarantee, whether expressed or implied, is made with respect to the data or the reported findings, observations, conclusions, and recommendations.

8.0 REFERENCES

- Bureau of Land Management (BLM), 2017. BLM Technical Memorandum, Screening Assessment Approaches for Metals in Soil at BLM HazMat/AML Sites. September 2017 Update.
- County of Santa Cruz, 2021. Response to Additional Soil Investigation Report and Human Health Evaluation, Pogonip Open Space, 501 Golf Club Drive, Santa Cruz, CA. December 15.
- Department of Toxic Substances Control (DTSC), 2011. User's Guide to LeadSpread 8 and Recommendations for Evaluation of Lead Exposures in Adults. Department of Toxic Substances Control. September.
- DTSC, 2015. Preliminary Endangerment Assessment Guidance Manual. Interim Final Revised. October.
- DTSC, 2020. Human Health Risk Assessment (HHRA) Note Number 3, DTSC recommended methodology for use of U.S. EPA Regional Screening Levels (RSLs) in Human Health Risk Assessment process at hazardous waste sites and permitted facilities. June.
- Duvergé, D.J., 2011. Establishing Background Arsenic in Soil of the Urbanized San Francisco Bay Region. A thesis submitted to the faculty of San Francisco State University in partial fulfillment of the requirements for the degree Master of Science in Geosciences. December.
- Environmental Investigation Services, Inc. (EIS), 2019. Soil Sampling Investigation Report, Pogonip Farm and Garden in Santa Cruz, CA. April 9.
- Gobster, PH, 2005. Recreation and Leisure research from an active living perspective: Taking a second look at urban trail use data. Leisure Sciences 27:367-383.
- Homeless Garden Project (HGP), 2017. Operations and Management Plan, Pogonip Farm & Garden, March.
- HGP, 2019. Report: Soil Lead Levels in the Lower Main Meadow of Pogonip. January 18.
- Interstate Technology & Regulatory Council (ITRC), 2005. Environmental Management at Operating Outdoor Small Arms Firing Ranges. February.
- RMD Environmental Solutions, Inc. (RMD), 2020a. Preliminary Endangerment Assessment Work Plan. Pogonip Farm and Garden, Santa Cruz, California. May 5.
- RMD, 2020b. Preliminary Endangerment Assessment Report, Pogonip Farm and Garden, 333 Golf Club Drive, Santa Cruz, California. August 10.
- RMD, 2021a. Delineation of Lead-Impacted Soil Work Plan, Pogonip Farm and Garden, 333 Golf Club Drive, Santa Cruz, California. May 26.

- RMD, 2021b. Additional Soil Investigation Report and Human Health Screening Evaluation. Lower Main Meadow, Pogonip Open Space, 501 Golf Club Drive, Santa Cruz, California. October 15.
- U.S. Environmental Protection Agency (USEPA), 1989. Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Part A. Interim Final. Solid Waste and Emergency Response. December.
- USEPA, 2021. Regional Screening Level (RSL) Summary Table (TR=1E-6, HQ=1). May.
- Weber, Hayes & Associates (WHA), 2019. Phase I Environmental Site Assessment for Recreational Open Space Property. November 19.
- WHA, 2021. Access Road Lead Sample Results. March.

CSM components related to soil.

CSM components related to groundwater.

CSM components related to surface water.

Receptor likely to be exposed via this route, so pathway is considered potentially complete.

Receptor may be exposed via this route, so pathway is considered potentially complete; however, pathway is considered minor.

Pathway is incomplete, no further evaluation required.

- ^a With the exception of the seasonal wetland, there are no identified surface water bodies within a one-half mile radius of the site.
- ^b Surface invasive activities are not expected to extend beyond 2 feet bgs.
- ^c Perched shallow groundwater supports seasonal wetlands and seeps. A 345 foot deep water supply well near the Pogonip clubhouse reported a depth to water of 128 feet below ground surface (bgs) in 1993. Due to depth to groundwater, it is not a media of concern at the site.
- d Camping is prohibited at the Site and the exposure pathways for this receptor are incomplete due to the implementation of engineering controls to mitigate unauthorized camping at the Site.

POGONIP FARM AND GARDEN
SANTA CRUZ, CALIFORNIA

HUMAN HEALTH CONCEPTUAL SITE MODEL

PROJECT NO.	DATE	DRAWN BY	APP. BY	RMD
01-POG-001	02/02/22	II	DW	ENVIRONMENTAL SOLUTIONS

FIGURE 5

Table 1 Lead Concentrations in Soil

Lower Main Meadow, Pogonip Open Space Santa Cruz, California

Sample ID	Date	Sample Depth	Lead Shot Observed	XRF Reading	Lead	
		(feet bgs)	(Yes / No)	(ppm)	(mg/kg)	
				Background Level ¹	43	
		Unr		ial) Screening Level ²	80	
				cial Screening Level ²	320 540	
			Recreational Trail Ceadow	Jse Screening Level ³	340	
EM-34-1'	8/3/2021	1	No	784	637	_
EM-34-2'	8/3/2021	2	No	56	37.9	
EM-35-0.5'	8/3/2021	0.5	No	1,822	1,800	
EM-35-2'	8/3/2021 ⁴	2	No	147	198	
EM-36-0.5'	8/3/2021	0.5	No	1,579	2,090	
EM-36-2'	8/3/2021	2	No	64	28.6	
EM-37-0.5'	8/3/2021	0.5	No	955	571	
EM-37-2'	8/3/2021	2	No	13	14.7	
EM-38-0.5'	8/3/2021	0.5	No	499	490	
EM-38-2'	8/3/2021	2	No	48	41.3	+
EM-39-0.5'	8/3/2021	0.5	No	519	504	
EM-39-2'	8/3/2021	2	No	285	220	
EM-40-0.5	8/3/2021	0.5	No	245	323	01
EM-40-2'	8/3/2021	2	No	16	18.6	+
2111 10 2	0/0/2021		vine	10		
R-1-0.5'	8/4/2021	0.5	No	226	400	T
R-1-2'	8/4/2021	2	No	131	61.5	1
R-2-0.5'	8/4/2021	0.5	No	28	215	†
R-2-2'	8/4/2021	2	No	4	8.80	01
R-3-0.5'	8/3/2021	0.5	No	810	1,530	
R-3-2'	8/3/2021	2	No	12	31.4	
R-4-0.5'	8/4/2021	0.5	No	1,302	1,600	
R-4-2'	8/4/2021	2	No	16	23.7	
R-5-0.5'	8/4/2021	0.5	No	234	9.86	
R-5-2'	8/4/2021	2	No	18	17.9	
R-6-0.5'	8/3/2021	0.5	No	628	573	
R-6-2'	8/3/2021	2	No	290	341	
R-7-0.5'	8/4/2021	0.5	No	454	456	
R-7-2'	8/4/2021	2	No	33	66.0	
R-8-1.5'	8/4/2021	1.5	No	98		
R-8-2'	8/4/2021	2	No	93		
R-9-0.5'	8/4/2021	0.5	No	182	256	
R-9-2'	8/4/2021	2	No	11	6.59	
R-10-0.5'	8/4/2021	0.5	No	86	94.0	
R-10-2'	8/4/2021	2	No	3	12.5	
R-11-0.5'	8/4/2021	0.5	No	93	75.7	
R-11-2'	8/4/2021	2	No	20	23.3	
R-12-0.5'	8/4/2021	0.5	No	61		
R-12-2'	8/4/2021	2	No	28		
R-13-0.5'	8/5/2021	0.5	No	741	686	
R-13-2'	8/5/2021	2	No	17	31.9	
R-14-0.5'	8/5/2021	0.5	No	1,075	1,220	
R-14-2'	8/5/2021	2	No	6	10.9	

Table 1

Lead Concentrations in Soil

Lower Main Meadow, Pogonip Open Space Santa Cruz, California

Sample ID	Date	Sample Depth	Lead Shot Observed	XRF Reading	Lead	
		(feet bgs)	(Yes / No)	(mqq)	(mg/kg)	
				Background Level ¹	43	
		Uni		al) Screening Level ²	80	
			Commerc	ial Screening Level ²	320 540	
		F M.C		se Screening Level ³	540	
T 4 0 FI	0./2./0004		ary Trail Area	40		
T-1-0.5'	8/3/2021	0.5	No	19		
T-1-2'	8/3/2021	2	No	14		
T-2-0.5'	8/4/2021	0.5	No	23		
T-2-2'	8/4/2021	2	No	6		
T-3-0.5'	8/4/2021	0.5	No	384	474	
T-3-2'	8/4/2021	2	No	8	8.15	
T-4-0.5'	1/11/2022	0.5	No	48		
T-4-2'	1/11/2022	2	No	15		
T-5-0.5'	1/11/2022	0.5	No	99	159	
T-5-2'	1/11/2022	2	No	13	7.07	
T-6-0.5'	1/11/2022	0.5	No	152 / 489 / 91	187	
T-6-2'	1/11/2022	2	No	12	9.42	
T-7-0.5'	1/11/2022	0.5	No	107 / 82	153	
T-7-2'	1/11/2022	2	No	33	8.92	
		North (Orchard			
NO-13-0.5'	8/5/2021	0.5	No	14		
NO-13-2'	8/5/2021	2	No	3		
NO-14-0.5'	8/5/2021	0.5	No	56		
NO-14-2'	8/5/2021	2	No	4		
		West N	/leadow			
WM-16-0.5'	8/5/2021	0.5	No	18		
WM-16-2'	8/5/2021	2	No	3		\neg
WM-17-0.5'	8/5/2021	0.5	No	133		
WM-17-2'	8/5/2021	2	No	5		

Notes:

Soil samples sieved using No. 10 sieve and metals analyzed using USEPA Method 6020.

Analytes detected above laboratory reporting limit are emboldened.

Analytes detected above background level and Recreational Trail User Screening Level are highlighted.

XRF = X-Ray Fluorescence.

bgs = below ground surface.

ppm = parts per million.

mg/kg = milligrams per kilogram.

-- = Not analyzed.

O1 = The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

- ¹ Lawrence Berkeley National Laboratory (LBNL, 2009), was used to establish an acceptable upper estimate background concentration for
- ² In order of priority, the screening level represents the Department of Toxic Substances Control (DTSC)-modified screening level (DTSC, 2020) followed by U.S. Environmental Protection Agency (USEPA) Regional Screening Level (RSL; USEPA, 2020).
- ³ The Recreational Trail Use Screening Level was determined based on an evaluation of soil data collected from 2019-2020 and was described in the Preliminary Endangerment Assessment Report (RMD, 2020).
- ⁴ Sample EM-35-2' initially reported a lead concentration of 5,810 mg/kg and was reanalyzed to confirm the result. The reanalyzed sample reported a lead concentration of 198 mg/kg.

References:

LBNL, 2009. Analysis of Background Distributions of Metals in Soil at Lawrence Berkeley National Laboratory. Revised April. RMD, 2020. Preliminary Endangerment Assessment Report, Pogonip Farm and Garden, 333 Golf Club Drive, Santa Cruz, California. August

Table 2

Polycyclic Aromatic Hydrocarbon Concentrations in Soil

Lower Main Meadow, Pogonip Open Space Santa Cruz, California

Sample ID	Date	Sample Depth	Depth Clay Target Fragments Observed	Notes	ANTHRACENE	ACENAPHTHENE	BENZO(A) ANTHRACENE	BENZO(A) PYRENE	BENZO(B)		BENZO(G,H,I) PERYLENE	BENZO(K)		CHRYSENE		ANTHRACENE	FLUORENE		INDENO(1,2,3-CD) PYRENE	PHENANTHRENE	PYRENE	NAPHTHALENE	1-METHYL NAPHTHALENE	2-METHYL NAPHTHALENE
		(feet bgs)	(feet bgs) (Residential) So		mg/kg) 17,000	(mg/kg) 3,300	(mg/kg) 1.1	(mg/kg) 0.11) (mg/kg 1.1	,	(mg/kg) NE	(mg/kg	3)	(mg/kg) 110	_	g/kg) (mg/ 0.028 2,4			(mg/kg) 1.1	(mg/kg) NE) (mg/kg 1,800		(mg/kg) 9.9	(mg/kg) 190
			Commercial So		130,000	23,000	12	1.3	13		NE NE	130		1,300		0.31 18,0			13	NE	13,000		30	1,300
			nal Trail Use So		120,000	23,000	45	4.5	45		NE	450		4,500		1.1 N			45	NE	12,000		160	1,600
		Reciedado	nai man ose se	accining Ecver								West Meadow		.,,,,,,,			,				,			.,,,,,
WM-C-5-0.5'	05/13/2020	0 - 0.5		<0.0	0645	<0.00645	0.00425 J	0.00642	J 0.00668		0.00606	J 0.00326	J	0.00552	J <0.00	645 0.0044	5 J <0.00645	0.	00467 J	<0.00645	0.00486	J <0.0215	<0.0215	<0.0215
WM-C-6-0.5'	05/14/2020	0 - 0.5		<0.0	0644	<0.00644	<0.00644	< 0.00644	0.00244	J	< 0.00644	<0.00644		<0.00644	<0.00				0.00644	< 0.00644	<0.00644	<0.0215	<0.0215	<0.0215
WM-C-7-0.5'	05/14/2020	0 - 0.5		<0.0	0752	<0.00752	0.00232 J	0.00283	J 0.00352	J	0.00295	J <0.00752		<0.00752	<0.00	752 <0.0075	2 <0.00752	<(0.00752	<0.00752	0.00292	J <0.0251	<0.0251	<0.0251
WM-C-8-0.5'	05/14/2020	0 - 0.5		0.0	273	0.0102	0.216	0.267	0.323		0.176	0.081		0.261	0.05		0.00293	J (0.155	0.102	0.309	<0.0240	<0.0240	<0.0240
WM-C-8-2'	05/14/2020	1.5 - 2			0741	<0.00741	<0.00741	<0.00741	<0.00741		<0.00741	<0.00741		<0.00741	<0.00			<(0.00741	<0.00741	<0.00741	<0.0247	<0.0247	<0.0247
WM-C-9A-1'	05/15/2020	0.5 - 1		0.2	231	0.0866	5.64	10.4	11.5		4.88	2.79		6.44	1.8	5 4.22	0.0319	J	4.99	<0.215	0.828	4.68	<0.215	<0.215
WM-C-9-2'	05/14/2020	1.5 - 2	0.5-1.5		0717	<0.00717	0.0332	0.0608	0.0593		0.0545	0.0232		0.0412	0.01			0	.0446	0.00582	J 0.0319	<0.0239	<0.0239	<0.0239
WM-C-10-0.5'	05/14/2020	0 - 0.5			115	0.00499 J	0.121	0.185	0.192		0.131	0.0803	1	0.172	0.03		<0.00706		0.112	0.0508	0.155	<0.0235	<0.0235	<0.0235
WM-C-10-2'	05/14/2020	1.5 - 2			258	0.00645 J	0.175	0.243	0.298		0.179	0.0819		0.217	0.05		0.00249		0.153	0.0736	0.229	<0.0217	<0.0217	<0.0217
WM-C-11-0.5'	05/13/2020	0 - 0.5		 	0640	<0.00640	0.00257 J	0.00383	J 0.00553	J	0.00419	J <0.00640		0.00307	J <0.00				00306 J	<0.00640	0.0028	J <0.0213	<0.0213	<0.0213
WM-C-11-2'	05/13/2020	1.5 - 2		0.	56	0.23	2.68	2.56	2.88		1.42	0.772		3.02	0.4	3.81	0.123		1.25	2.43	4.18	0.0112 J	0.0106 J	0.0215 J
WM-DG-1-0.5'	05/13/2020	0 - 0.5		 	0687	<0.00687	<0.00687	<0.00687	0.00247	J	<0.00687	<0.00687		<0.00687	<0.00			_	0.00687	<0.00687	<0.00687	<0.0229	<0.0229	<0.0229
WM-DG-2-0.5'	05/13/2020	0 - 0.5			0725	<0.00725	<0.00725	<0.00725	<0.00725		<0.00725	<0.00725	1	<0.00725	<0.00				0.00725	<0.00725	<0.00725	<0.0242	<0.0242	<0.0242
WM-DG-3-0.5'	05/13/2020	0 - 0.5		<0.0	0676	<0.00676	<0.00676	< 0.00676	0.00267	J	0.00215	J <0.00676		<0.00676	<0.00	676 <0.0067	6 <0.00676	<(0.00676	< 0.00676	<0.00676	<0.0225	<0.0225	<0.0225
WM-DG-4-0.5'	05/13/2020	0 - 0.5		<0.0	0726	<0.00726	<0.00726	0.0027	J 0.00347	J	0.00283	J <0.00726		<0.00726	<0.00	726 <0.0072	6 <0.00726	<(0.00726	< 0.00726	<0.00726	<0.0242	<0.0242	<0.0242
WM-DG-5-0.5'	05/13/2020	0 - 0.5		<0.0	0733	<0.00733	<0.00733	0.00239	J 0.00287	J	0.00256	J <0.00733		< 0.00733	<0.00	733 <0.0073	3 <0.00733	<(0.00733	< 0.00733	< 0.00733	<0.0244	<0.0244	<0.0244
WM-DG-6-0.5'	05/13/2020	0 - 0.5		0.1	31	0.0763	2.85	3.61	3.88		2.27	1.31		3.61	0.8	3.07	0.0173		2.03	0.633	3.23	0.00974 J	0.0111 J	0.0133 J
WM-DG-6-2'	05/13/2020	1.5 - 2		0.1	185	0.114	5.43	<u>7.56</u>	7.92		4.06	1.85		7.05	0.2		0.0248		3.58	0.942	6.73	0.0141 J	0.0162 J	0.0194 J
WM-DG-7-0.5'	05/13/2020	0 - 0.5		<0.0	0639	<0.00639	0.00345 J	0.00558	J 0.00635	J	0.00506	J <0.00639		0.00452	J <0.00	639 0.0039	9 J <0.00639	0.	00419 J	< 0.00639	0.00411	J <0.0213	<0.0213	<0.0213
WM-DG-8-0.5'	05/13/2020	0 - 0.5		<0.0	0730	<0.00730	0.0529	0.107	0.113		0.0893	0.0331		0.0669	0.02	52 0.0409	<0.00730	0	.0754	0.00898	0.0444	<0.0243	<0.0243	<0.0243
WM-DG-9-0.5'	05/13/2020	0 - 0.5		<0.0	0694	<0.00694	<0.00694	0.00271	J 0.0034	J	0.00272	J <0.00694		<0.00694	<0.00	694 <0.0069	4 <0.00694	0.	00213 J	< 0.00694	<0.00694	<0.0231	<0.0231	<0.0231
WM-DG-10-0.5'	05/13/2020	0 - 0.5		<0.0	0690	<0.00690	0.00254 J	0.00254	J 0.00298	J	<0.00690	<0.00690		0.00297	J <0.00	690 0.0036	6 J <0.00690	<(0.00690	<0.00690	0.00373	J <0.0230	<0.0230	<0.0230
WM-DG-11-0.5'	05/14/2020	0 - 0.5		<0.0	0242	<0.0242	0.041	0.0608	0.0665		0.0445	0.0224	J	0.0535	0.01	15 J 0.0469	<0.0242	0	.0371	0.0158	J 0.0477	<0.0804	<0.0804	<0.0804
WM-DG-11-0.5'-DUP	05/14/2020	0 - 0.5	0.5.4	Duplicate 0.9	986	0.651	8.45	<u>10.5</u>	12.2		3.35	4.00		9.86	2.3	8 11.1	0.260		3.61	4.14	11.8	0.321	0.0762	0.11
WM-DG-11A-1'	05/15/2020	0.5 - 1	0.5-1	0.00	0491 .	J <0.00659	0.0544 J3	0.0886	J3,J6 0.0813	J3,J6	0.0751	J3 0.0336	J3	0.0709 J	J3 0.01	96 0.0595	<0.00659	0	. 0637 J3	<0.0220	0.0152	0.061	<0.0220	<0.0220
WM-DG-11-2'	05/14/2020	1.5 - 2		<0.0	0716	<0.00716	0.00212 J	0.00258	J 0.00271	J	<0.00716	< 0.00716		<0.00716	<0.00	716 <0.0071	6 <0.00716	<(0.00716	<0.00716	< 0.00716	0.00716 J	<0.0239	<0.0239
WM-DG-12-0.5'	05/14/2020	0 - 0.5		0.0	278	0.0132	0.304	0.354	0.415		0.243	0.12		0.365	0.06	61 0.347	0.00273	J (0.203	0.13	0.498	<0.0222	<0.0222	<0.0222
WM-DG-12-2'	05/14/2020	1.5 - 2		<0.0	0675	<0.00675	0.0100	0.00997	0.0102		0.00534	J 0.00445	J	0.0126	<0.00	675 0.014	<0.00675	0.	. 00474 J	0.00682	0.0159	<0.0225	<0.0225	<0.0225
WM-DG-13-1.5'	05/14/2020	1 - 1.5	0.5-2	0.2	252	0.113	6.42	<u>11.7</u>	<u>14.8</u>		7.52	4.02		8.75	4.4	5.74	0.0241		6.25	0.901	5.68	0.0462	0.0166 J	0.0201 J
WM-DG-13-2'	05/14/2020	1.5 - 2	0.3-2	0.00	0609	J <0.00670	0.19	0.358	0.393		0.365	0.123		0.257	0.1	0.123	<0.00670	(0.292	0.0186	0.158	0.00491 J	<0.0223	<0.0223
WM-DG-14-0.5'	05/14/2020	0 - 0.5		<0.0	0659	<0.00659	0.00997	0.0149	0.0169		0.0138	0.00589	J	0.0122	0.00	377 J 0.0108	<0.00659	0	.0107	0.00295	J 0.0124	<0.0220	<0.0220	<0.0220
WM-DG-15-0.5'	05/14/2020	0 - 0.5		<0.0	0686	<0.00686	0.00482 J	0.00658	J 0.00832		0.00645	J 0.00264	J	0.00575	J <0.00	686 0.0055	2 J <0.00686	0.	00486 J	<0.00686	0.0065	J <0.0229	<0.0229	<0.0229
												North Orchard												
NO-3-0.5'	05/14/2020	0 - 0.5		<0.0	0726	<0.00726	<0.00726	<0.00726	0.00191	J	<0.00726	<0.00726		<0.00726	<0.00			<(0.00726	<0.00726	<0.00726	<0.0242	<0.0242	<0.0242
NO-4-0.5'	05/14/2020	0 - 0.5		 	0700	<0.00700	<0.00700	<0.00700	<0.00700		<0.00700	<0.00700	+	<0.00700	<0.00				0.00700	<0.00700	<0.00700		<0.0233	<0.0233
NO-6-0.5'	05/14/2020	0 - 0.5		<0.0	0786	<0.00786	<0.00786	<0.00786	<0.00786		<0.00786	<0.00786		<0.00786	<0.00	786 <0.0078	6 <0.00786	<(0.00786	<0.00786	<0.00786	<0.0262	<0.0262	<0.0262
				· ·	-	1						East Meadow	1	1			1 1		1					
EM-1-0.5'	05/12/2020	0 - 0.5		 	8860	<0.00688 J3		<0.00688	0.00228	J	<0.00688	<0.00688	_		<0.00			_	0.00688	<0.00688	<0.00688	<0.0229 J3		
EM-2-0.5'	05/12/2020	0 - 0.5			0693	<0.00693	0.00233 J	0.00267	J 0.00508	J	0.00326	J <0.00693	+	0.0028	J <0.00				00232 J	<0.00693	0.00292	J <0.0231	<0.0231	<0.0231
EM-3-0.5'	05/12/2020	0 - 0.5		 	0690	<0.00690	<0.00690	<0.00690	0.00324	J	0.00258	J <0.00690	+	<0.00690	<0.00				0.00690	<0.00690	<0.00690	<0.0230	<0.0230	<0.0230
EM-4-1.5'	05/12/2020	1 - 1.5			0656	<0.00656	<0.00656	<0.00656	<0.00656		<0.00656	<0.00656		<0.00656	<0.00				0.00656	<0.00656	<0.00656	<0.0219	<0.0219	<0.0219
EM-5-0.5'	05/12/2020	0 - 0.5			0647	<0.00647	<0.00647	<0.00647	<0.00647		<0.00647	<0.00647		<0.00647	<0.00				0.00647	<0.00647	<0.00647	<0.0216	<0.0216	<0.0216
EM-6-0.5'	05/12/2020	0 - 0.5			0671	<0.00671	<0.00671	<0.00671	0.00332	J	0.00223	J <0.00671	 	<0.00671	<0.00				0.00671	<0.00671	<0.00671	<0.0224	<0.0224	<0.0224
EM-7-0.5'	05/12/2020	0 - 0.5			0663	<0.00663	<0.00663	<0.00663	0.00224	J	<0.00663	<0.00663		<0.00663	<0.00				0.00663	<0.00663	<0.00663	<0.0221	<0.0221	<0.0221
EM-8-1'	05/12/2020	0.5 - 1			0652	<0.00652	<0.00652	<0.00652	<0.00652		<0.00652	<0.00652		<0.00652	<0.00				0.00652	<0.00652	<0.00652	<0.0217	<0.0217	<0.0217
EM-9-0.5'	05/12/2020	0 - 0.5	_		0641	<0.00641	<0.00641	<0.00641	<0.00641		<0.00641	<0.00641		<0.00641	<0.00				0.00641	<0.00641	<0.00641	<0.0214	<0.0214	<0.0214
EM-10-0.5'	05/12/2020	0 - 0.5	0-1.5		0633	<0.00633	<0.00633	<0.00633	<0.00633		<0.00633	<0.00633		<0.00633	<0.00				0.00633	<0.00633	<0.00633	<0.0211	<0.0211	<0.0211
EM-11-0.5'	05/12/2020	0 - 0.5			0708	<0.00708	<0.00708	<0.00708	<0.00708		<0.00708	<0.00708		<0.00708	<0.00				0.00708	<0.00708	<0.00708	0.0114 J	<0.0236	0.0102 J
EM-21-0.5'	05/14/2020	0 - 0.5			0646	<0.00646	<0.00646	<0.00646	<0.00646		<0.00646	<0.00646	+	<0.00646	<0.00				0.00646	<0.00646	<0.00646	<0.0215	<0.0215	<0.0215
EM-21-0.5'-DUP	05/14/2020	0 - 0.5		Duplicate <0.0	0650	<0.00650	<0.00650	<0.00650	0.00183	J	<0.00650	<0.00650	1	<0.00650	<0.00	650 <0.0065	0 <0.00650	<(0.00650	<0.00650	<0.00650	<0.0217	<0.0217	<0.0217

Notes:

PAHs analyzed using USEPA Method 8270C-SIM.

Analytes detected above laboratory reporting limit are **emboldened**.

Analytes detected above Unrestricted (Residential) Screening Level are highlighted orange.

Analytes detected above Recreational Trail Use Screening Level are highlighted blue.

Analytes detected above Commercial Screening Level are <u>underlined</u>.

bgs = Below ground surface.

mg/kg = Milligrams per kilogram.

NE = Not Established.

PAHs = Polycyclic Aromatic Hydrocarbons.

SIM = Selective Ion Mode.

J = The identification of the analyte is acceptable; the reported value is an estimate.

J3 = The associated batch QC was outside the established quality control range for precision.

J6 = The sample matrix interfered with the ability to make any accurate determination; spike value is low.

¹ The screening level represents the Department of Toxic Substances Control (DTSC)-modified screening level (DTSC, 2020).

 2 The Recreational Trail Use Screening Level was determined based on an evaluation of soil data collected from 2019-2020.

References:

DTSC, 2020. Human Health Risk Assessment (HHRA) Note Number 3. June.

Table 2

Polycyclic Aromatic Hydrocarbon Concentrations in Soil

Lower Main Meadow, Pogonip Open Space Santa Cruz, California

> Page 2 of 2 RMD ENVIRONMENTAL SOLUTIONS, INC.

APPENDIX A EXCERPTS FROM PREVIOUS REPORTS

Report: Soil Lead Levels in the Lower Main Meadow of Pogonip

This is report updated **January 18, 2019**. By the Homeless Garden Project

On November 18, 2018, following a meeting with Parks and Recreation staff, HGP received a formal letter alerting us to the presence of historic skeet shooting in the Lower Main Meadow, and the possibility of higher lead levels resulting from this use.

At the time agricultural soil testing was underway. The initial soil test results were received on December 7, 2018 and are shown in Table 1. Soil samples were taken using the <u>best practices</u> <u>methodology outlined by the Soil and Plant Nutrient Testing Laboratory at the University of Massachusetts Amherst, for agriculture soil testing. Lead levels tested in this initial phase <u>report plant available (extractible) lead levels, NOT total lead levels.</u> (In addition to reporting plant available lead, 10 other agriculturally significant tests were reported including pH.)</u>

Table 1 (below) shows the results of round 1 testing. Sample locations are shown with green pins on the map.

Table 1.

Location	Extractable Lead ppm	рН
Orchard	76.6	5.3
Field 1	1.4	5.3
Acacia	1.2	4.6
Field 2	4.9	5.5

One sample, from the area planned as the future orchard, showed lead levels that fell above the optimum range of 22 ppm recommended by the lab.

Further samples were collected from the lower meadow to explore what area of the Lower Meadow showed elevated lead levels. Three samples (numbers 2,3,6) showed elevated lead levels. These samples correspond to the 100 foot wetlands buffer zone. Table 2 shows the results of round 2 testing Samples locations are shown with red "pins" on the map.

Table 2 shows the results of round 2 testing showing extractable Lead. Sample locations are shown on the map by red pins.

Location	Extractable Lead ppm	рН
1	8.1	5.4
2	89.8	5.3
3	50.2	5.4
4	11.2	5.2
5	16.5	5.5
6	69.4	5.3

January 2019 update

The lab at the University of Massachusetts recommends that soils with elevated levels of extractable lead (>22 ppm) be tested for <u>Total Sorbed Lead</u>. They recommend that samples be analyzed by the Agricultural Analytical Services Laboratory at the Pennsylvania State University Analytical Services Lab. Additional samples for both extractable and total Sorbed Lead were taken on December 19, 2018 and shipped to the lab on December 27, 2018. Table 3 and 4 show the results of this third round of soil testing. Locations of these samples are indicated on the map with light blue pins.

Table 3. Round 3 testing for extractable lead (same tests as shown in Table 1 and 2) Locations of these samples are indicated on the map with light blue pins. Plum Creek is indicated with a white pin.

Location	Extractable Lead ppm	рН
Plum Creek	0.9	6.2
Sample 7 (1 +2+3 from Table 2)	3.4	5.3
Sample 8 (4 +5 +6 from Table 2)	9.6	5.5

Table 4 shows total Sorbed Lead as measured by the Pennsylvania State University Analytical Services Lab. We are pleased to report that this testing indicates that while the area shows somewhat elevated lead levels, the results are below the EPA standards of 400 to 1200 ppm that would require modified farming practices.

Table 4. Shows total Sorbed Lead as measured by the Pennsylvania State University Analytical Services Lab. Note mg/kg = ppm. Light blue pins (Sorb 1 is near the road and Sorb two is further to the east)

Location	Pb (Lead) mg/kg	Cd (Cadmium) mg/kg	Cu (Copper) mg/kg	Cr (Chromium) mg/kg	Ni (Nickel) mg/kg	Zn (Zink) mg/kg
Sorb1 (1+2+3 from Table 2)	145.86	0.25	3.85	11.06	4.68	17.82
Sorb2 (4+5+6 from Table 2)	56.08	0.25	3.36	11.24	4.76	18.62

NOTE: 400 to 1200 ppm lead are set by the EPA and would require modified farming practices

Additional information:

According to Pennsylvania State College of Agriculture Science Lead Fact Sheet and other sources, the plant available Lead depends on its solubility and solubility is strongly impacted by soil pH. At low pH (pH 5 or less), lead is more soluble. At neutral (or more basic) pHs lead is held tightly in soil and its solubility is low.

Both the <u>University of Massachusetts</u> and <u>Oregon State University</u> publish guidelines for cultivation in areas impacted by higher lead levels. These recommendations are identical and allow for cultivations at lead levels up to 1200 ppm TOTAL LEAD. These recommendations follow the guidelines issued by the <u>EPA</u>.

Map showing sample locations:

References (shown in the order they appear linked in the text):

- 1) https://ag.umass.edu/soil-plant-nutrient-testing-laboratory/fact-sheets/sampling-instructio ns-for-routine-soil-analysis
- 2) https://ag.umass.edu/soil-plant-nutrient-testing-laboratory/fact-sheets/soil-lead-testing-interpretation-recommendations
- 3) https://ag.umass.edu/soil-plant-nutrient-testing-laboratory/fact-sheets/soil-lead-testing-int-erpretation-recommendations
- 4) https://ag.umass.edu/soil-plant-nutrient-testing-laboratory/fact-sheets/soil-lead-testing-int-erpretation-recommendations
- 5) Lead in Residential Soils: Sources, Testing, and Reducing Exposure. Pennsylvania State College of Agricultural Sciences. Copyright 1999
- 6) http://smallfarms.oregonstate.edu/sfn/su10toxicmetals
- 7) https://www.atsdr.cdc.gov/csem/csem.asp?csem=34&po=8

Table A1 Summary of Soil Analytical Results

Pogonip Farm and Garden Santa Cruz, California

Sample	Sample	Sample	Sample		Me	tals		Т	PH
ID	Date	Depth	Туре	Arsenic	Copper	Lead	Zinc	Diesel	Motor Oil
	•	RWQCB R	esidential ESLs	0.26	3,100	80	23,000	260	12,000
	RWQCE	3 Commercial/	Industrial ESLs	0.31	47,000	320	350,000	1,200	180,000
	RWQC	B Constructio	n Worker ESLs	0.98	14,000	160	110,000	1,100	54,000
B1	2/28/2019	0.0-0.5	Composite	2.1	3.9	120	17	<0.24	<1.3
B1N-0.5	2/28/2019	0.0-0.5	Discrete			150			
B1S-0.5	2/28/2019	0.0-0.5	Discrete			58			
B1E-0.5	2/28/2019	0.0-0.5	Discrete			110			
B1W-0.5	2/28/2019	0.0-0.5	Discrete			64			
B1	2/28/2019	1.5-2.0	Composite	2.9	4.6	6.2	18		
B1N-2.0	2/28/2019	1.5-2.0	Discrete			4.5			
B1S-2.0	2/28/2019	1.5-2.0	Discrete			9.5			
B1E-2.0	2/28/2019	1.5-2.0	Discrete			8.0			
B1W-2.0	2/28/2019	1.5-2.0	Discrete			6.4			
B2	2/28/2019	0.0-0.5	Composite	2.0	3.2	60	60	<0.24	<1.3
B2	2/28/2019	1.5-2.0	Composite	1.6	3.3	5.8	98		
В3	2/28/2019	0.0-0.5	Composite	2.8	3.1	84	20	<0.24	<1.3
B3N-0.5	2/28/2019	0.0-0.5	Discrete			190			
B3S-0.5	2/28/2019	0.0-0.5	Discrete			48			
B3E-0.5	2/28/2019	0.0-0.5	Discrete			47			
B3W-0.5	2/28/2019	0.0-0.5	Discrete			89			
В3	2/28/2019	1.5-2.0	Composite	2.5	3.9	5.6	22		
B3N-2.0	2/28/2019	1.5-2.0	Discrete			5.7			
B3S-2.0	2/28/2019	1.5-2.0	Discrete			11			
B3E-2.0	2/28/2019	1.5-2.0	Discrete			20			
B3W-2.0	2/28/2019	1.5-2.0	Discrete			5.8			
B4	2/28/2019	0.0-0.5	Composite	1.8	3.6	24	19	<0.24	<1.3
B4	2/28/2019	1.5-2.0	Composite	1.8	3.8	6.6	19		
B5	2/28/2019	0.0-0.5	Composite	9.6	4.2	25	26	<0.24	<1.3
B5	2/28/2019	1.5-2.0	Composite	7.3	3.7	4.6	20		
В6	2/28/2019	0.0-0.5	Composite	1.6	4.0	60	23	8.4 A01, A52	85 A01, A57
В6	2/28/2019	1.5-2.0	Composite	2.1	3.5	6.4	22		
В7	2/28/2019	0.0-0.5	Composite	3.2	50	38	160	<0.24	<1.3
В7	2/28/2019	1.5-2.0	Composite	2.9	7.1	8.6	47		
В8	2/28/2019	0.0-0.5	Composite	3.7	4.8	19	22	1.3 J, A52	2.1 J, A57
В8	2/28/2019	1.5-2.0	Composite	4.4	4.1	5.8	19		
В9	2/28/2019	0.0-0.5	Composite	1.8	3.8	8.9	19	1.3 J, A52	3.4 J, A57

Table A1 **Summary of Soil Analytical Results**

Pogonip Farm and Garden Santa Cruz, California

Sample	Sample	Sample	Sample		Me	tals		Т	PH
ID	Date	Depth	Туре	Arsenic	Copper	Lead	Zinc	Diesel	Motor Oil
	•	RWQCB R	esidential ESLs	0.26	3,100	80	23,000	260	12,000
	RWQCE	3 Commercial/	Industrial ESLs	0.31	47,000	320	350,000	1,200	180,000
	RWQC	CB Construction	n Worker ESLs	0.98	14,000	160	110,000	1,100	54,000
В9	2/28/2019	1.5-2.0	Composite	3.0	4.3	12	20		
B10	2/28/2019	0.0-0.5	Composite	0.98	3.2	6.1	19	1.3 J, A52	1.7 J, A57
B10	2/28/2019	1.5-2.0	Composite	1.2	3.4	4.4	17		
B11	2/28/2019	0.0-0.5	Composite	2.2	4	11	20	<0.24	<1.3
B11	2/28/2019	1.5-2.0	Composite	1.9	3.5	5.1	19		
B12	2/28/2019	0.0-0.5	Composite	1.2	2.9	10	15	<0.24	<1.3
B12	2/28/2019	1.5-2.0	Composite	2.2	3.3	6.9	24	NA	NA
B13	2/28/2019	0.0-0.5	Composite	1.4	2.8	70	17	NA	NA
otes:	•	•	•	9.6	50.0	190.0	160.0	•	•

Notes: 9.6 Sample results reported in milligrams per kilogram (mg/kg).

Metals analyzed by USEPA Method 6010B.

TPH analyzed by USEPA Method 8015B.

TPH = total petroleum hydrocarbons.

Bolded value = exceedence of Residential ESL.

<0.24 = not detected above analytical laboratory Method Detection Limit (MDL).

--- = not analyzed or not established.

J = Estimated Value.

A01 = Detection and quantation limits were raised due to sample dilution.

A52 = Chromatogram not typical of diesel.

A57 = Chromatogram not typical of motor oil.

RWQCB ESL = San Francisco Bay Regional Water Quality Control Board Environmental Screening Level (January 2019, Rev 1).

Table A2 Summary of Soil Analytical Results - PAHs

Pogonip Farm and Garden Santa Cruz, California

									PAHs							
Sample ID	Sample Date	Sample Depth (feet)	Acenaphthene	Anthracene	Benzo[a]anthracene	Benzo[b]fluoranthene	Benzo[k]fluoranthene	Benzo[a]pyrene	Benzo[g,h,i]perlyene	Chrysene	Dibenzo[a,h]anthracene	Fluoroanthene	Fluorene	Indeno[1,2,3-cd]pyrene	Phenanthrene	Pyrene
	RWQCB Re	esidential ESLs	3,600	18,000	1.1	1.1	11	0.11	NE	110	0.11	2,400	2,400	1.1	NE	1,800
RWQ	CB Commercial/I	Industrial ESLs	45,000	230,000	20	21	210	2.1	NE	2,100	2.1	30,000	30,000	21	NE	23,000
RWC	QCB Construction	n Worker ESLs	10,000	50,000	110	110	910	10	NE	9,100	11	6,700	6,700	110	NE	5,000
B1	2/28/2019	0.0-0.5	<0.0012	<0.0012	<0.0011	<0.00095	<0.0011	0.0020 J	<0.0011	<0.00097	<0.00099	<0.0014	<0.0011	<0.00092	<0.0012	<0.0015
B2	2/28/2019	0.0-0.5	<0.0012	<0.0012	0.0012 J	0.0028 J	<0.0011	0.0031	<0.0011	0.0011 J	<0.00099	<0.0014	<0.0011	<0.00092	<0.0012	<0.0015
В3	2/28/2019	0.0-0.5	<0.0012	<0.0012	0.0016 J	0.0034	<0.0011	0.0034	<0.0011	0.0016 J	<0.00099	<0.0014	<0.0011	<0.00092	<0.0012	<0.0015
B4	2/28/2019	0.0-0.5	<0.0012	<0.0012	<0.0011	0.0019 J	<0.0011	0.0024 J	<0.0011	<0.00097	<0.00099	<0.0014	<0.0011	<0.00092	<0.0012	<0.0015
B5	2/28/2019	0.0-0.5	0.026	0.13 A01	0.55 A01	0.49 A01	0.20 A01	0.44 A01	0.17 A01	0.59 A01	0.063	0.78 A01	0.013	0.18 A01	0.48 A01	0.85 A01
В6	2/28/2019	0.0-0.5	0.006	0.014	0.22 A01	0.33 A01	0.10 A01	0.32 A01	0.23 A01	0.25 A01	0.066 A01	0.19 A01	0.0012 J	0.20 A01	0.042	0.24 A01
В7	2/28/2019	0.0-0.5	0.0063	0.024	0.42 A01	0.66 A01	0.26 A01	0.64 A01	0.50 A01	0.49 A01	0.17 A01	0.31 A01	0.0019 J	0.45 A01	0.075 A01	0.39 A01
В8	2/28/2019	0.0-0.5	<0.0012	<0.0012	0.0095	0.19	0.0054	0.014	0.0097	0.011	0.0016 J	0.0092	<0.0011	0.0078	0.0025 J	0.012
В9	2/28/2019	0.0-0.5	<0.0012	<0.0012	0.0021 J	<0.00095	<0.0011	0.0043 J	0.0019 J	0.0023 J	<0.00099	0.0019 J	<0.0011	0.0015 J	<0.0012	0.0022 J
B10	2/28/2019	0.0-0.5	<0.0012	<0.0012	<0.0011	<0.00095	<0.0011	0.0019 J	<0.0011	<0.00097	<0.00099	<0.0014	<0.0011	<0.00092	<0.0012	<0.0015
B11	2/28/2019	0.0-0.5	0.0050	0.0098	0.17 A01	0.21 A01	0.064	0.19 A01	0.091 A01	0.20 A01	0.031	0.17 A01	<0.0011	0.089 A01	0.028	0.20 A01
B12	2/28/2019	0.0-0.5	<0.0012	<0.0012	<0.0011	<0.00095	<0.0011	<0.00095	<0.0011	<0.00097	<0.00099	<0.0014	<0.0011	<0.00092	<0.0012	<0.0015

Notes:

Sample results reported in milligrams per kilogram (mg/kg).

PAHs analyzed by USEPA Method 8270C.

Bolded value = exceedence of Residential ESL.

<0.0012 = not detected above analytical laboratory Method Detection Limit (MDL).

PAHs = Polycyclic Aromatic Hydrocarbons.

NA = not analyzed.

J = Estimated Value.

NE = ESL not established.

A01 = Detection and quantation limits were raised due to sample dilution.

RWQCB ESL = San Francisco Bay Regional Water Quality Control Board Environmental Screening Level (January 2019, Rev 1).

Table A3 Metals in Soil Pogonip Farm and Garden Santa Cruz, California

Sample ID	Date	Sample Depth	Depth Shot Observed	XRF Reading	Notes	Antimon	,	Arsenic		Copper		Lead		Zinc	
		(feet bgs)	(feet bgs)	(ppm)	eening Level	(mg/kg) 31		(mg/kg) 11		(mg/kg) 3,100		(mg/kg) 80		(mg/kg) 23,000	
					Level Source	USEPA RS		Backgrour	nd	USEPA RS	Ls	HHRA Note	3	USEPA RS	
WM-C-1-0.5'	5/13/2020	0.05	l I	222	ı	West Meadow		2.63		12.3	1	181	1	23.9	_
WM-C-1-0.5	5/13/2020	0 - 0.5 1.5 - 2		222 54		1.31	J	2.03		12.3		36.9		23.9	+
WM-C-2-0.5'	5/13/2020	0 - 0.5		202		0.989	J	2.13	J	6.91		182		15.3	†
WM-C-2-0.5' DUP	5/13/2020	0 - 0.5		202	Duplicate	1.57	J	2.45		7.54		156		13.6	
WM-C-2-2'	5/13/2020	1.5 - 2 0 - 0.5		26		1.23		- 214		8.38		11.1 161		53.6	4
WM-C-3-0.5' WM-C-3-2'	5/13/2020 5/13/2020	1.5 - 2		244 13		1.23	J	2.14	J	0.30		23.5		55.0	+-
WM-C-4-0.5'	5/13/2020	0 - 0.5		368		0.683	J	1.92	J	6.96		141		15	+
WM-C-4-21	5/13/2020	1.5 - 2		27		-		-		'n		12.6		-	
WM-C-5-0.5'	5/13/2020	0 - 0.5		95		0.568	J	1.58	J	77.7	01	76.9	01	78.5	01
WM-C-6-0.5'	5/14/2020	0 - 0.5		30		0.897	J,J6	2.16		4.92		10.6		19.7	+
WM-C-7-0.5' WM-C-8-0.5'	5/14/2020 5/14/2020	0 - 0.5 0 - 0.5		13 31		0.785 0.879	J	<2.51 <2.40		47.3 18.1		8.57 15.0		59.1 31.0	+-
WM-C-9A-1'	5/15/2020	0.5 - 1		105		0.727	J	1.55	J	5.61		71.2		18.6	+-
WM-C-10-0.5'	5/14/2020	0 - 0.5		-		1.65	J	3.81		9.09		27.0		26.6	+
WM-C-11-0.5'	5/13/2020	0 - 0.5		45		1.47	J	10.7		7.86		29.3		24.3	
WM-DG-1-0.5'	5/13/2020	0 - 0.5		241		1.41	J	2.69		8.57	<u> </u>	188	<u> </u>	16.4	4
WM-DG-1-2' WM-DG-2-0.5'	5/13/2020 5/13/2020	1.5 - 2 0 - 0.5		9 168		<2.42	\vdash	2.74	1	10.3	1	15.9 6.16		12.9	+-
WM-DG-2-0.5' WM-DG-3-0.5'	5/13/2020	0 - 0.5		90		<2.42 0.833	J	1.28	J	5.66	1	51.1		23.0	+-
WM-DG-4-0.5'	5/13/2020	0 - 0.5		30		<2.42	Ť	1.76	J	16.2	1	19.8		28.3	1
WM-DG-5-0.5'	5/13/2020	0 - 0.5		19		<2.44		1.53	J	13.9		38.1		23.1	
WM-DG-6-0.5'	5/13/2020	0 - 0.5		311		<2.22		2.25		11.0		27.0		18.5	
WM-DG-7-0.5' WM-DG-7-2'	5/13/2020 5/13/2020	0 - 0.5 1.5 - 2		120 29		0.721	J	1.77	J	7.01	-	116		17.0	-
WM-DG-7-2 WM-DG-8-0.5'	5/13/2020	0 - 0.5		59 59		0.637	J	1.43	J	9.12		12.1 55.7		21.0	+-
WM-DG-9-0.5'	5/13/2020	0 - 0.5		28		<2.31	J	1.52	J	299		17.5		91.1	†
WM-DG-10-0.5'	5/13/2020	0 - 0.5		46		0.640	J	2.78		10.9		28.7		25.0	
WM-DG-11-0.5'	5/14/2020	0 - 0.5		59		2.01	J	2.72	В	263		76.0		689	
WM-DG-11-0.5'-DUP WM-DG-11A-1'	5/14/2020 5/15/2020	0 - 0.5 0.5 - 1	0.5-2	59 16	Duplicate	1.55 <2.20	J	2.13 1.77	B,J J	14.9 9.01	-	40.9		75.8 15.6	+
WM-DG-11A-1	5/14/2020	0.5 - 1		64		1.58	J	1.65	B,J	10.8		11.5 39.1		51.6	+
WM-DG-13-1.5'	5/14/2020	0 - 0.5	1.0	1,095		41.7	J	15.9	B,J	6,320		1,230		28,500	1
WM-DG-13-2'	5/14/2020	1.5 - 2	1-2	33		3.33		3.61	В	214		49.0		2,770	
WM-DG-14-0.5'	5/14/2020	0 - 0.5		19		0.817	J	2.82	В	8.28		13.8		40.8	—
WM-DG-15-0.5'	5/14/2020	0 - 0.5		23		1.80 North Orchard	J	2.17	B,J	76.9		23.8		303	
NO-1-0.5'	5/14/2020	0 - 0.5		225		3.54	<u>.</u>	3.05	В	6.32	I	265		24.0	$\overline{}$
NO-1-2'	5/14/2020	1.5 - 2		25		-		-		-		6.55		-	1
NO-2-0.5'	5/14/2020	0 - 0.5		119		1.65	J	1.94	B,J	8.14		107		17.6	
NO-2-2'	5/14/2020	1.5 - 2		28		- / 04		4 77	D.	- 44.0		5.58		- 04.5	4—
NO-3-0.5' NO-3-2'	5/14/2020 5/14/2020	0 - 0.5 1.5 - 2		863 35		6.94		4.77	В	11.3	1	690 45.3	1	21.5	+
NO-4-0.5'	5/14/2020	0 - 0.5		211		2.03	J	1.60	B,J	8.16		180		15.7	†
NO-4-2'	5/14/2020	1.5 - 2		16		ı		-		ı		3.97		-	
NO-5-0.5'	5/14/2020	0 - 0.5		10		1.08	J	1.57	B,J	50.8		40.0		44.2	
NO-6-0.5'	5/14/2020	0 - 0.5		118		1.97	J	2.32	B,J	23.2		144		41.8	+
NO-6-2' NO-7-0.5'	5/14/2020 5/14/2020	1.5 - 2 0 - 0.5		14 43		0.926	J	1.91	B,J	8.08		13.9 29.8		24.8	+
NO-8-0.5'	5/15/2020	0 - 0.5		31		0.928	J	<2.46	د, د	18.9	1	18.5		23.1	+-
NO-9-0.5'	5/14/2020	0 - 0.5		39		1.51	J	1.70	B,J	14.4	L	20.0		26.7	1
NO-10-0.5'	5/15/2020	0 - 0.5		17		<2.33		<2.33		18.0		14.0		27.5	
NO-11-0.5'	5/15/2020	0 - 0.5		18		1.04	J	0.655	J	15.0		14.5		26.8	
NO-12-0.5'	5/15/2020	0 - 0.5		21		0.718	J	<2.42		17.1		10.5		49.8	
EM-1-0.5'	5/12/2020	0 - 0.5		119		East Meadow 2.34	1	2.42		63.1	T	138	ı	69.6	T
EM-1-0.5	5/12/2020	1.5 - 2		39		2.34	+	2.42	1	- 63.1	1	22.1		- 69.6	+-
EM-2-0.5'	5/12/2020	0 - 0.5		153		1.93	J	2.42		24.6	1	182	l	31.0	+
EM-2-2'	5/12/2020	1.5 - 2		15		-		-		-		13.4		-	
EM-3-0.5'	5/12/2020	0 - 0.5		219		2.87	Щ	3.23	lacksquare	16.6	\perp	203		20.4	1
EM-3-2' EM-4-1.5'	5/12/2020 5/12/2020	1.5 - 2 1 - 1.5		24 166		5.15	\vdash	4.58		15.8	 	51.3 164	<u> </u>	25.3	+
EM-4-1.5'	5/12/2020	1 - 1.5		47		5.15	+	4.58	1	15.8	1	61.3		- 25.3	+-
EM-5-0.5'	5/12/2020	0 - 0.5		139		2.51		3.21		19.1	1	115		26.4	+-
EM-5-2'	5/12/2020	1.5 - 2		95		-		-		-		53.6		-	
EM-6-0.5'	5/12/2020	0 - 0.5		372		3.46		3.91		19.9		264		28.8	
EM-6-2'	5/12/2020	1.5 - 2		83		- 17.0	\vdash	- 0 50	1	- 21 1	1	17.9	<u> </u>	- 30.7	+
EM-7-0.5' EM-7-2'	5/12/2020 5/12/2020	0 - 0.5 1.5 - 2		758 46		17.0	\vdash	9.58	1	21.1	 	752 117	-	30.7	+-
EM-8-1'	5/12/2020	0.5 - 1		549		11.8	+	8.69		14.7	1	717		31.1	+
EM-8-2'	5/12/2020	1.5 - 2		94		-		-		-		140		-	\perp
EM-9-0.5'	5/12/2020	0 - 0.5		1,227		5.46		6.71		10.7		1,140		22.1	T
EM-9-2'	5/12/2020	1.5 - 2		168		-		-		-		81.9		-	

Table A3

Metals in Soil

Pogonip Farm and Garden Santa Cruz, California

Sample ID	Date	Sample Depth	Depth Shot Observed	XRF Reading	Notes	Antimony	,	Arsenic		Copper	Lead	Zinc	
		(feet bgs)	(feet bgs)	(ppm)	eening Level	(mg/kg) 31		(mg/kg)		(mg/kg)	(mg/kg) 80	(mg/kg)	
FM-10-0.51	5/12/2020	0 - 0.5	Ke	2,973	eening Levei	6.07		11 8.44		3,100 12.6	1,670	23,000 29.0	1
EM-10-0.5	5/12/2020	1.5 - 2		15		6.07		0.44		12.0	34.1	27.0	
EM-11-0.5'	5/12/2020	0 - 0.5		569		3.78		7.16		24.4	856	36.2	
EM-11-2'	5/12/2020	1.5 - 2		94	 			7.10		24.4	140	30.2	
EM-12-0.5'	5/14/2020	0 - 0.5		31	 	<2.44		3.04	В	38.6	9.15	98.3	
EM-13-0.5'	5/15/2020	0 - 0.5		24		0.815	J	0.554	J	9.98	11.2	25.4	
EM-14-0.5'	5/14/2020	0 - 0.5		38		1.58	J	2.92	В	12.5	33.0	44.5	
EM-14-0.5'-DUP	5/14/2020	0 - 0.5		38	Duplicate	2.14	J	2.80	В	14.0	32.5	55.3	
EM-15-0.5'	5/15/2020	0 - 0.5		26		1.12	J	1.72	J	13.0	16.1	33.0	
EM-16-0.5'	5/15/2020	0 - 0.5		42		1.00	J	1.33	J	14.0	24.6	37.3	
EM-17-0.5'	5/15/2020	0 - 0.5		47		1.50	J	1.13	J	13.8	40.3	35.0	
EM-18-0.5'	5/15/2020	0 - 0.5		39		3.29		2.35		11.2	44.5	30.5	
EM-19-0.5'	5/14/2020	0 - 0.5		167		3.13		3.57	В	12.7	116	46.0	
EM-19-2'	5/14/2020	1.5 - 2		64		-		-		-	38.4	-	
EM-20-0.5'	5/15/2020	0 - 0.5		58	i i	<2.53		2.07	J	20.5	95.2	33.4	
EM-20-2'	5/15/2020	1.5 - 2		10	i i	=		-		-	9.26	-	
EM-21-0.5'	5/14/2020	0 - 0.5		776		10.0		6.12		7.16	768	28.7	
EM-21-0.5'-DUP	5/14/2020	0 - 0.5		776	Duplicate	6.85		5.65	В	7.33	769	30.6	
EM-21-2'	5/14/2020	1.5 - 2		17		=		-		-	9.52	-	
EM-22-0.5'	5/15/2020	0 - 0.5		100		<2.28		2.39		12.3	92.6	22.8	
EM-22-2'	5/15/2020	1.5 - 2		17	i i	=		-		-	25.9	-	
EM-23-0.5'	5/15/2020	0 - 0.5		29		0.932	J	1.24	J	12.8	10.7	26.0	
EM-24-0.5'	5/15/2020	0 - 0.5		33		0.886	J	0.686	J	9.50	9.18	26.8	
EM-25-0.5'	5/15/2020	0 - 0.5		30		0.786	J	0.810	J	12.2	10.3	28.7	
EM-26-0.5'	5/15/2020	0 - 0.5		19		0.656	J	1.02	J	11.7	10.8	25.1	
EM-27-0.5'	5/15/2020	0 - 0.5		34		1.02	J	0.823	J	13.6	6.12	26.4	
EM-28-0.5'	5/15/2020	0 - 0.5		29		0.813	J	0.865	J	14.4	14.3	31.9	
EM-29-0.5'	5/15/2020	0 - 0.5		31		0.720	J	1.02	J	10.8	17.8	36.8	
EM-30-0.5'	5/15/2020	0 - 0.5		31		<2.25		2.52		21.9	18.0	24.1	
EM-31-0.5'	5/15/2020	0 - 0.5		33		<2.30		2.07	J	9.94	15.4	19.1	
EM-32-0.51	5/15/2020	0 - 0.5		18		<2.34		2.01	J	13.8	37.4	23.0	
EM-33-0.5'	5/15/2020	0 - 0.5		17	İ	<2.25		2.23	J	8.74	12.3	19.0	

Notes: Metals analyzed using USEPA Method 6010B.

Analytes detected above laboratory reporting limit are **emboldened**.

Analytes detected above Residential Screening Level are highlighted.

Background = Duverge, 2011. Establishing Background Arsenic in Soil of the Urbanized San Francisco Bay Region. December.

HHRA Note 3 = DTSC, 2019. Human Health Risk Assessment (HHRA) Note Number 3. April.

USEPA RSLs = USEPA, 2020. Regional Screening Level (RSL) Summary Table (TR=1E-6, HQ=1). May.

USEPA RSLS = USEPA, 2020. Regional Screening Level (RSL) Summary Table (TR=1E-6, FIQ=1).

DTSC = California Environmental Protection Agency, Department of Toxic Substances Control.

USEPA = United States Environmental Protection Agency.

bgs = Below ground surface.

mg/kg = Milligrams per kilogram.

- = Not analyzed.

B = The same analyte is found in the associated blank.

J = The identification of the analyte is acceptable; the reported value is an estimate.

J6 = The sample matrix interfered with the ability to make any accurate determination; spike value is low.

O1 = The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

Table A4

Polycyclic Aromatic Hydrocarbons in Soil

Pogonip Farm and Garden Santa Cruz, California

Sample ID	Date	Sample Depth	Depth Clay Target Fragments Observed	Notes	ANTHRACENE	ACENAPHTHENE	BENZO(A) ANTHRACENE	BENZO(A)		BENZO(B) FLUORANTHENE	BENZO(G,H,I) PERYLENE	BENZO(K) FLUORANTHENE	CHRYSENE	DIBENZ(A,H) ANTHRACENE	FLUORANTHENE	FLUORENE	INDENO(1,2,3-CD) PYRENE		PHENANTHRENE	NAPHTHALENE	1-METHYL NAPHTHALENE	2-METHYL NAPHTHALENE
Residential S	Screening Level	(feet bgs)	(feet bgs)		(mg/kg) 17,000	(mg/kg) 3,300	(mg/kg) 1.1	(mg/kg	g)	(mg/kg) 1.1) (mg/kg) NE	(mg/kg) (mg/kg) 110	(mg/kg) 0.028	(mg/kg, 2,400) (mg/kg) 2,300	(mg/kg	1) (mg/kg) (mg/kg) NE 1,800	(mg/kg) 2.0	(mg/kg) 9.9	(mg/kg) 190
Residential S	ocieening Level				17,000	3,300	1.1	0.11		1.1	West Me		110	0.020	2,400	2,300	1.1		142 1,000	2.0	7.7	170
WM-C-5-0.5'	05/13/2020	0 - 0.5			<0.00645	<0.00645	0.00425 J	0.00642	J	0.00668	0.00606 J	0.00326	J 0.00552 .	J <0.00645	0.00445	J <0.00645	0.00467	J <0.0	0645 0.00486 J	<0.0215	<0.0215	<0.0215
WM-C-6-0.5'	05/14/2020	0 - 0.5			<0.00644	< 0.00644	< 0.00644	<0.00644		0.00244	J <0.00644	<0.00644	< 0.00644	<0.00644	<0.00644	< 0.00644	<0.00644	<0.0	0644 <0.00644	<0.0215	< 0.0215	<0.0215
WM-C-7-0.5'	05/14/2020	0 - 0.5			<0.00752	<0.00752	0.00232 J	0.00283	J	0.00352	J 0.00295 J	<0.00752	< 0.00752	<0.00752	<0.00752	< 0.00752	<0.00752	<0.0	0752 0.00292 J	<0.0251	< 0.0251	<0.0251
WM-C-8-0.5'	05/14/2020	0 - 0.5			0.0273	0.0102	0.216	0.267		0.323	0.176	0.081	0.261	0.0532	0.340	0.00293	0.155	0.	102 0.309	<0.0240	<0.0240	<0.0240
WM-C-8-2'	05/14/2020	1.5 - 2			<0.00741	<0.00741	<0.00741	<0.00741	<	<0.00741	<0.00741	<0.00741	<0.00741	<0.00741	<0.00741	<0.00741	<0.00741	<0.0	0741 <0.00741	<0.0247	<0.0247	<0.0247
WM-C-9A-1'	05/15/2020	0.5 - 1	0.5-1.5		0.231	0.0866	5.64	10.4		11.5	4.88	2.79	6.44	1.85	4.22	0.0319	J 4.99		215 0.828	4.68	<0.215	<0.215
WM-C-9-2'	05/14/2020	1.5 - 2			<0.00717	<0.00717	0.0332	0.0608		0.0593	0.0545	0.0232	0.0412	0.0145	0.0272	<0.00717	0.0446		0582 J 0.0319	<0.0239	<0.0239	<0.0239
WM-C-10-0.5'	05/14/2020	0 - 0.5			0.0115	0.00499 J	0.121	0.185		0.192	0.131	0.0803	0.172	0.0395	0.162	<0.00706	0.112		508 0.155	<0.0235	<0.0235	<0.0235
WM-C-10-2'	05/14/2020	1.5 - 2			0.0258	0.00645 J	0.175	0.243		0.298	0.179	0.0819	0.217	0.0506	0.268	0.00249	0.153		736 0.229	<0.0217	<0.0217	<0.0217
WM-C-11-0.5'	05/13/2020 05/13/2020	0 - 0.5			<0.00640 0.56	<0.00640	0.00257 J	0.00383 2.56	J	0.00553 2.88	J 0.00419 J 1.42	<0.00640 0.772	0.00307 . 3.02	J <0.00640	0.00273	J <0.00640 0.123	0.00306		0640 0.0028 J 43 4.18	<0.0213	<0.0213 J 0.0106	<0.0213 J 0.0215 J
WM-C-11-2' WM-DG-1-0.5'	05/13/2020	1.5 - 2 0 - 0.5			<0.00687	0.23 <0.00687	2.68 <0.00687	<0.00687		0.00247	J <0.00687	<0.00687	<0.00687	0.468 <0.00687	3.81 <0.00687	<0.00687	1.25 < 0.00687		43 4.18 0687 <0.00687	0.0112 <0.0229	<0.0229	<0.0219
WM-DG-2-0.5'	05/13/2020	0 - 0.5			<0.00725	<0.00725	<0.00725	<0.00725		<0.00247	<0.00725	<0.00725	<0.00725	<0.00725	<0.00725	<0.00725	<0.00725		0725 <0.00725	<0.0227	<0.0227	<0.0242
WM-DG-3-0.5'	05/13/2020	0 - 0.5			<0.00725	<0.00725	<0.00676	<0.00725		0.00267	J 0.00215 J	< 0.00728	<0.00676	<0.00676	<0.00728	<0.00676	<0.00725		0676 <0.00676	<0.0225	<0.0212	<0.0225
WM-DG-4-0.5'	05/13/2020	0 - 0.5			<0.00726	<0.00726	<0.00726	0.0027		0.00347	J 0.00283 J	<0.00726	<0.00726	<0.00726	<0.00726	<0.00726	<0.00726		0726 <0.00726	<0.0242	<0.0242	<0.0242
WM-DG-5-0.5'	05/13/2020	0 - 0.5			<0.00733	< 0.00733	<0.00733	0.00239		0.00287	J 0.00256 J	< 0.00733	< 0.00733	< 0.00733	< 0.00733	< 0.00733	< 0.00733		0733 <0.00733	<0.0244	<0.0244	<0.0244
WM-DG-6-0.5'	05/13/2020	0 - 0.5			0.131	0.0763	2.85	3.61		3.88	2.27	1.31	3.61	0.836	3.07	0.0173	2.03	0.0	533 3.23	0.00974	J 0.0111	J 0.0133 J
WM-DG-6-2'	05/13/2020	1.5 - 2			0.185	0.114	5.43	7.56		7.92	4.06	1.85	7.05	0.238	5.06	0.0248	3.58	0.9	942 6.73	0.0141	J 0.0162	J 0.0194 J
WM-DG-7-0.5'	05/13/2020	0 - 0.5			<0.00639	< 0.00639	0.00345 J	0.00558	J	0.00635	J 0.00506 J	< 0.00639	0.00452	J <0.00639	0.00399	J <0.00639	0.00419	J <0.0	0639 0.00411 J	<0.0213	< 0.0213	<0.0213
WM-DG-8-0.5'	05/13/2020	0 - 0.5			<0.00730	<0.00730	0.0529	0.107		0.113	0.0893	0.0331	0.0669	0.0252	0.0409	< 0.00730	0.0754	0.0	0.0444	<0.0243	<0.0243	<0.0243
WM-DG-9-0.5'	05/13/2020	0 - 0.5			<0.00694	<0.00694	<0.00694	0.00271	J	0.0034	J 0.00272 J	<0.00694	< 0.00694	<0.00694	<0.00694	< 0.00694	0.00213	J <0.0	0694 <0.00694	<0.0231	<0.0231	<0.0231
WM-DG-10-0.5'	05/13/2020	0 - 0.5			<0.00690	<0.00690	0.00254 J	0.00254	J	0.00298	J <0.00690	<0.00690	0.00297	J <0.00690	0.00366	J <0.00690	<0.00690		0690 0.00373 J	<0.0230	<0.0230	<0.0230
WM-DG-11-0.5'	05/14/2020	0 - 0.5			<0.0242	<0.0242	0.041	0.0608		0.0665	0.0445	0.0224	J 0.0535	0.0115 J	0.0469	<0.0242	0.0371		158 J 0.0477	<0.0804	<0.0804	<0.0804
WM-DG-11-0.5'-DUP	05/14/2020	0 - 0.5	0.5-1	Duplicate	0.986	0.651	8.45	10.5		12.2	3.35	4.00	9.86	2.38	11.1	0.260	3.61		14 11.8	0.321	0.0762	0.11
WM-DG-11A-1'	05/15/2020	0.5 - 1			0.00491	J <0.00659	0.0544 J3	3 0.0886	J3,J6	0.0813	J3,J6 0.0751 J3	0.0336		0.0196	0.0595	<0.00659	0.0637		0220 0.0152	0.061	<0.0220	<0.0220
WM-DG-11-2'	05/14/2020	1.5 - 2			<0.00716	<0.00716	0.00212 J	0.00258	J	0.00271	J <0.00716	<0.00716	<0.00716	<0.00716	<0.00716	<0.00716	<0.00716		0716 <0.00716	0.00716	J <0.0239	<0.0239
WM-DG-12-0.5' WM-DG-12-2'	05/14/2020 05/14/2020	0 - 0.5 1.5 - 2			0.0278 < 0.00675	0.0132 < 0.00675	0.304	0.354 0.00997		0.415	0.243 0.00534 J	0.12 0.00445	0.365 J 0.0126	0.0661	0.347	0.00273 < 0.00675	0.203 0.00474		13 0.498 0682 0.0159	<0.0222 <0.0225	<0.0222 <0.0225	<0.0222 <0.0225
WM-DG-13-1.5'	05/14/2020	1.5 - 2			0.252	0.113	6.42	11.7		14.8	7.52	4.02	8.75	<0.00675 4.45	5.74	0.0241	6.25		901 5.68	0.0462	0.0166	J 0.0201 J
WM-DG-13-1.3	05/14/2020	1.5 - 2	0.5-2		0.00609	J <0.00670	0.19	0.358		0.393	0.365	0.123	0.257	0.105	0.123	<0.00670	0.292		186 0.158	0.00491	J <0.0223	<0.0201
WM-DG-14-0.5'	05/14/2020	0 - 0.5			<0.00659	<0.00659	0.00997	0.0149		0.0169	0.0138	0.00589	J 0.0122	0.00377 J	0.0108	<0.00659	0.0107		0295 J 0.0124	<0.0220	<0.0220	<0.0220
	05/14/2020				<0.00686	<0.00686	0.00482 J						J 0.00575 .			J <0.00686	0.00486				<0.0229	
						1					North O											
NO-3-0.5'	05/14/2020	0 - 0.5			<0.00726	<0.00726	<0.00726	<0.00726		0.00191	J <0.00726	<0.00726	<0.00726	<0.00726	<0.00726	<0.00726	<0.00726	<0.0	0726 <0.00726	<0.0242	<0.0242	<0.0242
NO-4-0.5'	05/14/2020	0 - 0.5			<0.00700	<0.00700	<0.00700	<0.00700	<	<0.00700	<0.00700	<0.00700	<0.00700	<0.00700	<0.00700	<0.00700	<0.00700	<0.0	0700 <0.00700	<0.0233	<0.0233	<0.0233
NO-6-0.5'	05/14/2020	0 - 0.5			<0.00786	<0.00786	<0.00786	<0.00786	<	<0.00786	<0.00786	<0.00786	<0.00786	<0.00786	<0.00786	<0.00786	<0.00786	<0.0	0786 <0.00786	<0.0262	<0.0262	<0.0262
											East Me	adow										
EM-1-0.5'	05/12/2020	0 - 0.5			<0.00688	<0.00688 J3		<0.00688	_	0.00228	J <0.00688	<0.00688	J3 <0.00688	<0.00688	<0.00688	<0.00688	<0.00688		<0.00688			J3 <0.0229 J3
EM-2-0.5'	05/12/2020	0 - 0.5			<0.00693	<0.00693	0.00233 J	0.00267	_	0.00508		<0.00693	0.0028	J <0.00693	0.00337	J <0.00693	0.00232	J <0.0		<0.0231	<0.0231	<0.0231
EM-3-0.5'	05/12/2020	0 - 0.5			<0.00690	<0.00690	<0.00690	<0.00690	_	0.00324	J 0.00258 J	<0.00690	<0.00690	<0.00690	<0.00690	<0.00690	<0.00690		0690 <0.00690	<0.0230	<0.0230	<0.0230
EM-4-1.5'	05/12/2020	1 - 1.5			<0.00656	<0.00656	<0.00656	<0.00656		<0.00656	<0.00656	<0.00656	<0.00656	<0.00656	<0.00656	<0.00656	<0.00656		0656 <0.00656	<0.0219	<0.0219	<0.0219
EM-5-0.5'	05/12/2020	0 - 0.5			<0.00647	<0.00647	<0.00647	<0.00647	_	<0.00647	<0.00647	<0.00647	<0.00647	<0.00647	<0.00647	<0.00647	<0.00647		0647 <0.00647	<0.0216	<0.0216	<0.0216
EM-6-0.5'	05/12/2020	0 - 0.5			<0.00671	<0.00671	<0.00671	<0.00671		0.00332	J 0.00223 J	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.00671	<0.0		<0.0224	<0.0224	<0.0224
EM-7-0.5' EM-8-1'	05/12/2020	0 - 0.5			<0.00663 <0.00652	<0.00663	<0.00663	<0.00663 <0.00652	_	0.00224 < 0.00652	J <0.00663 <0.00652	<0.00663 <0.00652	<0.00663 <0.00652	<0.00663	<0.00663 <0.00652	<0.00663 <0.00652	<0.00663 <0.00652		0663 <0.00663 0652 <0.00652	<0.0221 <0.0217	<0.0221 <0.0217	<0.0221 <0.0217
EM-9-0.5'	05/12/2020 05/12/2020	0.5 - 1 0 - 0.5			<0.00652	<0.00652 <0.00641	<0.00652 <0.00641	<0.00652		<0.00652	<0.00652	<0.00652	<0.00652	<0.00652 <0.00641	<0.00652	<0.00652	<0.00652		0641 <0.00641	<0.0217	<0.0217	<0.0217
			0-1.5		 			_				+			+							<0.0214
			0-1.3					_	_						+							0.0102 J
EM-10-0.5' EM-11-0.5'	05/12/2020 05/12/2020 05/12/2020	0 - 0.5 0 - 0.5	0-1.5		<0.00641 <0.00633 <0.00708	<0.00641 <0.00633 <0.00708	<0.00641 <0.00633 <0.00708	<0.00641 <0.00633 <0.00708	<	<0.00641 <0.00633 <0.00708	<0.0	00641	<0.0214 <0.0211 0.0114	<0.0214 <0.0211 J <0.0236	<0.02							

Table A4

Polycyclic Aromatic Hydrocarbons in Soil

Pogonip Farm and Garden Santa Cruz, California

Sample ID	Date	Sample Depth	Depth Clay Target Fragments Observed	Notes	ANTHRACENE	ACENAPHTHENE	BENZO(A) ANTHRACENE	BENZO(A) PYRENE	BENZO(B) FLUORANTHENE	BENZO(G,H,I) PERYLENE	BENZO(K) FLUORANTHENE	CHRYSENE	DIBENZ(A,H) ANTHRACENE	FLUORANTHENE	FLUORENE	INDENO(1,2,3-CD) PYRENE	PHENANTHRENE	PYRENE	NAPHTHALENE	1-METHYL NAPHTHALENE	2-METHYL NAPHTHALENE
		(feet bgs)	(feet bgs)		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Residential S	Screening Level				17,000	3,300	1.1	0.11	1.1	NE	11	110	0.028	2,400	2,300	1.1	NE	1,800	2.0	9.9	190
EM-21-0.51	05/14/2020	0 - 0.5			<0.00646	<0.00646	<0.00646	< 0.00646	<0.00646	< 0.00646	<0.00646	<0.00646	< 0.00646	<0.00646	<0.00646	< 0.00646	< 0.00646	< 0.00646	<0.0215	<0.0215	< 0.0215
EM-21-0.5'-DUP	05/14/2020	0 - 0.5		Duplicate	<0.00650	<0.00650	< 0.00650	<0.00650	0.00183 J	< 0.00650	<0.00650	<0.00650	< 0.00650	<0.00650	< 0.00650	< 0.00650	< 0.00650	< 0.00650	<0.0217	<0.0217	<0.0217

PAHs analyzed using USEPA Method 8270C-SIM.

Analytes detected above laboratory reporting limit are emboldened.

Analytes detected above Residential Screening Level are highlighted. Residential Screening Levels are based on HHRA Note 3 values.

bgs = Below ground surface.

mg/kg = Milligrams per kilogram.

NE = Not Established.

PAHs = Polycyclic Aromatic Hydrocarbons.

SIM = Selective Ion Mode.

HHRA Note 3 = DTSC, 2019. Human Health Risk Assessment (HHRA) Note Number 3. April.

DTSC = California Environmental Protection Agency, Department of Toxic Substances Control.

J = The identification of the analyte is acceptable; the reported value is an estimate.

J3 = The associated batch QC was outside the established quality control range for precision.

J6 = The sample matrix interfered with the ability to make any accurate determination; spike value is low.

Weber, Hayes & Associates

Hydrogeology and Environmental Engineering 120 Westgate Drive, Watsonville, CA 95076 (831) 722-3580 // www.weber-hayes.com

December 29, 2021

<u>Heather.Hanna@santacruzcounty.us</u> (831) 454- 4813

County of Santa Cruz Health Services Agency Environmental Health Division To the attention of: Heather Hanna, P.G. 701 Ocean Street, Suite 312 Santa Cruz, California 95060

Subject: Shallow Soil Sampling for Total Lead

Location: Lower Meadows Access Road, Pogonip, 333 Golf Club Drive, Santa Cruz

This Letter Report describes completed field sampling and laboratory testing tasks designed to document Total Lead concentrations along an untested access road that is located in the vicinity of a historic skeet shooting range. The shallow soil sampling was completed to supplement the results of previous shallow sampling and testing conducted by RMD Environmental Solutions in August 2020 (see Attachment C).

These tasks were completed to evaluate *potential* environmental risks associated with using this dirt connector path as a walking/ vehicle road for possible future land uses. This report is being submitted in accordance with an approved *Workplan*¹, and includes the following attachments:

Figure 1: Topographic Location Map

Figure 2: Aerial Vicinity Map

Figure 3: Soil Sample Location Map (including Lead Results

Table 1: Summary of Soil Sample Analytical Results

Attachment A: Field Documentation and Photos Attachment B: State-Certified Laboratory Report

Attachment C: Reference: Previous Testing Results in the Vicinity (RMD, August 2020)

¹ Weber Hayes and Associates (WHA) report: Workplan: Shallow Soil Sampling for Total Lead, March 2021.

Field Sample Collection: On March 11, 2021, twelve (12) soil borings were hand-augured at sampling sites *B-1* through *B-12* to an approximate depth of 2-ft below ground surface (bgs). See Figure 3 for locations. The soil samples were obtained using a stainless-steel hand-auger used to remove soils to the target depth and logged noting the lithology of the soils, moisture content, and any unusual odor or discoloration. There was no evidence of chemical impacts observed in any of the soil borings.

Two (2) samples per location were selected for laboratory analysis: one sample was obtained from ground surface to 6-inches, and the second, deeper sample was collected from 18-to 24-inches below ground surface (bgs). Relatively undisturbed soil samples were obtained using a specialty-machined slide hammer. Borings were initially augured to a target depth whereupon the slide hammer was used to drive clean stainless-steel liners into native soils. The slide hammer was then gently back-tapped out of the boring to retrieve a relatively undisturbed soil sample. The stainless steel auger and sampling hammer was decontaminated between each boring location using non-phosphate detergent and distilled water.

The sample containers were labeled, placed in sealed, plastic bags, and stored in a chilled cooler for transportation under standard chain-of-custody procedures to Pace Analytical, a California-certified laboratory. Field notes and photo documentation of the field sampling is included in Appendix A.

Laboratory Analysis: The twenty-four (24) discrete soil samples were analyzed for Total Lead concentrations. The dry weight results are tabulated along with agency screening thresholds on Table 1 and clip of the results is presented to the right. Certified laboratory report is attached (Attachment B)

Data Summary: The majority of samples have Total Lead concentrations below risk-based, *Environmental Screening Levels (ESL)* for different land uses (i.e., commercial, construction worker, and unrestricted/residential land uses. Three (3) of the twelve (12) *surface* samples have detectable concentrations of Total Lead that <u>exceed</u> the *residential/ unrestricted* land use ESL of 80 mg/kg, but <u>do not exceed</u> the commercial/construction worker threshold of 320 and 160 respectively (see Table 1 for details).

Note: This additional sampling and testing was originally completed to provide supporting data for an agricultural project (i.e., safe use as an access road for the possible location of Homeless Garden Project,

S	ample Inforn	nation	Lab Results
Sample Date	Sample ID	Depth (inches below ground surface)	Total Lead Concentrations (mg/kg)
	8-1	surface	13.9
		18"	5.68
	B-2	surface	42.5
	7.7	18"	7.61
- 11	B-3	surface	183
		18"	6.54
	B-4	surface	208
	5.4	18"	10.6
	B-5	surface	8.2
7	6-5	18"	5.74
20.	B-6	surface	37.5
4		18"	9.61
March 11, 2021	B-7	surface	19
arc	B-7	18"	15.2
Σ	B-8	surface	158
	6-8	18"	5.25
	B-9	surface	78
	6-9	18"	7.16
	B-10	surface	51.6
	B-10	18"	7.32
	B-11	surface	33.3
	0-11	18"	5.06
	B-12	surface	14.9
	6-12	18"	7
	ental Screenir	CONTRACTOR OF THE PROPERTY OF	80 / 320 (160)

HGP). Currently, HGP plans for farming on this portion of Pogonip have been postponed indefinitely.

Limitations: Our service consists of professional opinions and recommendations made in accordance with generally accepted geologic principles and practices. This warranty is in lieu of all others, either expressed or implied. The analysis and conclusions in this report are based on sampling and testing which are necessarily limited. Additional data from future work may lead to modifications of the options expressed herein.

If you have any questions or comments regarding this report, please contact us our office (722-3580). Sincerely,

WEBER, HAYES AND ASSOCIATES

Pat Hoban, PG
Principal Geologist

ATTACHMENTS:

Figure 1: Location
Figure 2: Vicinity Map

Figure 3: Soil Sample Locations and Lead Results

Table 1: Summary of Soil Sample Analytical Results

Attachment A: Field Documentation Attachment B: Laboratory Report

Attachment C: Reference: Previous Testing Results in the Vicinity - RMD, August 2020

FIGURES	
Figure 1: Legation Man	
Figure 1: Location Map	
Figure 2: Vicinity Map	l Dogulto
Figure 3: Soil Sample Locations And Lead	i Results

Soil Sample Locations And Lead Results

SITE: **POGONIP ACCESS TRAIL EVALUATION** ADDRESS: 333 GOLF CLUB DRIVE, SANTA CRUZ

DATE: MARCH 2021

TABLES	
Table 1: Summary of Soil Analytical Results	

Table 1

Summary of Soil Analytical Results

Pogonip Access Trail Evaluation

333 Golf Club Dr. Santa Cruz

All soil results are in milligrams per Kilogram (mg/Kg)

	Sample Inform	ation	Lab Results
Sample Date	Sample ID	Depth (inches below ground surface)	Total Lead Concentrations (mg/kg)
	B-1	surface	13.9
	J 1	18"	5.68
	B-2	surface	42.5
	5 -	18"	7.61
	B-3	surface	183
	2 3	18"	6.54
	B-4	surface	208
	5 1	18"	10.6
	B-5	surface	8.2
21	5 3	18"	5.74
March 11, 2021	B-6	surface	37.5
11,	5 0	18"	9.61
<u> </u>	B-7	surface	19
larc	5 7	18"	15.2
Σ	B-8	surface	158
	50	18"	5.25
	B-9	surface	78
	B-3	18"	7.16
	B-10	surface	51.6
	9-10	18"	7.32
	B-11	surface	33.3
	D-11	18"	5.06
	B-12	surface	14.9
	D-12	18"	7
	nental Screenin dential / Commercia (Construction Wo	l Land Uses	80 / 320 (160)

Notes

Environmental Screening Levels (ESLs): Regional Water Quality Control Board (San Francisco Bay Region) guideline document: *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater* (Final version, 2019). The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted

https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary_Tables_24Jan19_Rev1.pdf

158	= green-shaded cell indicates detected concentration exceeds the ESL threshold limit for a residential land use
	= red-shaded cell indicates detected concentration exceeds the ESL threshold limit for a

residential land use

Field Documentation Field Notes and Photo Sheets	
Field Notes and Photo Sheets	

This following provides detailed descriptions of methods used during shallow soil sampling investigations. Included are specifications for shallow soil sampling with a slide hammer, and decontamination procedures.

Shallow Soil Sampling Procedures: A backhoe, two-person power auger, or a hand auger will be used to get to a point immediately above the sampling depth. Once at the desired sampling depth, a slide hammer will be used to drive a clean stainless-steel liner encased in the slide hammer sampling shoe to obtain a relatively undisturbed sample. The slide hammer consists of a metal rod with one end containing a sampling shoe and cutting head with which a sample liner can be installed. At the other end of the metal rod there is a handle that is constrained on the rod, but slides up and down the rod allowing force to be applied to the sampling shoe. Manual operation is

used to slide the handle down the rod to force the sampling shoe equipped with the liner into native soils.

Materials retrieved from the sampler will be logged on an as-needed basis by the experienced field geologist using the Unified Soil Classification System (USCS), noting in particular, the lithology of the soils, moisture content, and any unusual odor or discoloration. The liner and relatively undisturbed soils will then be removed from the sampling shoe. The liner is then protected at both ends with Teflon tape, sealed with non-reactive caps, taped, and immediately stored in an insulated container cooled with blue ice at a temperature of 4 degree Celsius or less. Soil samples selected for Volatile Organic Compound (VOC) analysis may follow field preservation protocols according to EPA Method 5035, as described in DTSC's Guidance Document for the Implementation of United States Environmental Protection Agency Method 5035: Methodologies for Collection, Preservation, Storage, and Preparation of Soils to be Analyzed for Volatile Organic Compounds, dated November 2004. Selected samples will be transported under appropriate chain-of-custody documentation to a State certified laboratory performing the targeted analysis.

Upon completion of sampling at the designated location, the location will be backfilled and compacted with the materials that were removed prior to sampling, supplemented by clean imported fill as necessary.

Equipment Decontamination and Containerization Procedures: All sampling equipment will be cleaned prior to arriving on site to prevent possible transfer of contamination from another site. Additionally, sampling equipment will be thoroughly cleaned between each sampling run with a Liqui-Nox ® or Alconox ® solution followed by a double rinsing with distilled water to prevent the vertical transfer of contamination, and/or contamination from location to location onsite. Accordingly, all sampling equipment will be cleaned following sampling operations to prevent the possible transfer of contamination to another site.

All cleaning rinsate, and wash water produced during the shallow soil sampling and decontamination process will be containerized on site in D.O.T. approved 55-gallon drums for subsequent profiling and disposal at an approved facility.

Pogonip - Access Road Sampling 333 Golf Club Drive, Santa Cruz, California 2021-3-11

Hand Auger used to collect samples

Example of Borehole showing shallow groundwater

Pogonip - Access Road Sampling 333 Golf Club Drive, Santa Cruz, California 2021-3-11

Hand Auger being decontaminated between samples

Collecting Soil from Hand Auger

Weber, Hayes & Associates Hydrogeology and Environmental Engineering

Page _____ of ____

Project/Client: Popping Horeless Gorden Lead Soil Sampling	Project # : 2105%
Site Location: 333 Golf Club Drive Santa Cruz	Date: 3-11-21
Field tasks: Shallow Soil Sampling (Hand Auger)	Weather: Cloudy Morning
Personnel / Company On-Site: RN and OA (WHA)	Close
Attachments: Site Map Data Sheets Geologic Logs Photos	COC Chargeable Materials

Time:										Notes	;										
0630	-Villare	y ousi	le. (Sale	code	137	1.	ScHi	 Kg .4	p Sa	yle s	cvol	dec	on sta	ufiò-	01	. hu	ck	a l	B-1	locati
0700	- Finis		5emp 1.0'	by:	Fo and and	la.	3-1 bran	. Soil in. (1 led													
0730	- Oliv	. Ou	site	and	lhe	afh	v . l	lan	 a .0	nsite	a	s well.	*				*		*		· ·
0800 0815 0835 0845 0900 0910	- Finis - Finis - Finis - Finis - Finish	hed shed shed shed who	B-3 B-4 B-8-8-8-8-8		Saturalina hade	mesl	l (nater lev. a vstly	stendi	1.5'6 1.5'6	rater tgs. gs. medi	a f	-2')	_	in i.c	2 6 1	20'	4.95.				
09 56 0945 1000	- Finis - Finis - Finis	ales.	B-17 B-17	l Vac	rosth ked	η Sί . υρ.			· 8	. 10	•	6 (e) 74 (e) 6 (f) 75 (e)	conh	, wa	zed	*		take	. L		t.
1030.	- Equ	i'pman	22.	to	Luc.																
1045	- Equi	ipman		to.	be			. F.				786		290		*	96 (8				
	- Equ th -Demos	ipman		. to .	be			. r.				• 266 • 266 • 35		. (80 . (81 . (8)		*	*				* ·
1045	- Equi	ipman		to	600 100 100			. r	·		- # - # - # - #	200 000 150 150		. 290 . 260 . 260		**	* * *		e E		* · * ·
1045	- Equi	ipman		. to:	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00							• 86 • 85 • 95 • 98		• 280 • 282 • 302 • 660		*	8 8		K K K		* .
1045	- Equi	ipman										· 66		. 200			8 8 2		K & & & & .		
1045	- Equi	i'pman										. 100 . 105 . 100 . 100 . 100		. 200 . 200 . 200 . 200 . 200 . 200 . 200			96 95 96 9				
1045	- Equi	i'pman										. 86 . 85 . 30 . 30 . 30 . 30 . 30		. 200 . 200 . 200 . 200 . 200 . 200 . 200			96 95 93				
1045	- Equi	i'pman												. 200 . 200 . 200 . 200 . 200 . 200 . 200 . 200 . 200							
1045	- Equi	i'pman												. 200 . 200							
1045	- Equi	i'pman			200							0, 1		. 990 . 980 . 980 . 980 . 980 . 980 . 980 . 980 . 980 . 980 . 980	F	* * * * * * * * * * * * * * * * * * * *			化 10 0 0 0 0 0 0 0 0 0 0 0 0 0		
1045	- Equi	i'pman												. 990 . 980 . 980 . 980 . 980 . 980 . 980 . 980 . 980 . 980 . 980 . 980 . 980 . 980					化超离 医电影医医电影医电影		
1045	- Equi	i'pman										PN		. 26 25 25 25 25 25 25 25 25 25 25 25 25 25					***************************************		

Signature of Field Personnel & Date

Soil Logging Field Data Sheet

ect Name/Number: Pogonia Lead Soil Sampling / 2+058 Recorded by: Ryan Nyberg / Oliver Abbott

Boring/Pothole I.D./ GPS Coordinate	Sample Depths (change in lithology)	Soil Type & % (Gravel, Sand, Silt, Clay)	Color (Brown, Black Grey, etc)	Density (loose, med-dense, dense, v.dense)	Moisture (Dry, damp, moist, wet)	Odors/ Discoloration?	Additional Comments
B-1 (36.9921757, -122.0383443)	(0-0.5) (1.5-2.0)	0-1: Silt 1-2: Clayer SILT	dark yellowish brown light brown w/ora		damp-moist	None	0700
B-2 36.9913964, 122.0881860)	(11)	0-15: Silt 1.5-2: Clay	dark yellowish bo	un 160 gc	t _t	None	0136
B-3 36.9925624, 122.0392454)		0-1: Silt 1-2: ClapsySilt	dark yellowish brown	1008	clamp-net Saturakel	None	0750
B-4 36.9926817, -122.0381974)		0-0.5: silt 0.5-2: Silt	dark yelvish	loose	Saturated Rosm a 5-2.0	None	0810
B-5 36,9927929, 122.038(233)		0-1.5: Silt 1.5-2: Clayey Silt	darkyellwish brown light born	loose	saturally from	Non	0825
B-6 36.9928754, 122.0380503)		01.5: Si'lt	dark yellowith	lose	dang-net dang-net	None	0840
B-7 .36.9929619, 122.0379614)		0-1.5: Clayery Silt 1.5-2: CLAY	derk yellowish brown	loose to midina dose	daup to moist	Non	0855
B-9 36.9931065 -122.0378421)		0-1.5: Clarey Silt 1.5-2.0: Clarey Silt	dark yellowish brown light brown	loose	daup lanoist Saturated	Work	0910
(36.9932206, 122.0377093)		0-1.5: 5:17 1.5-2: Clay-5:11	dark yellon light brunk	loose	damptomoist	nme	8917
B-10 36,9933007, 122.0376204)		0.0-1.5: Silt 1.5-2: cby-silt	dark yellowsh brown	loose	damp to moist	None	0930
B-11 36.99 34155, 122.0375 [25]		0.0-1.5: Silt 1.5-2: clayer silt	dork yellanish boom	loose	danp is moist	Done	0940
B-12 36.9935802, 122.0373690)	\	0-2.0 = silt	dark yellarish brown	loose	damp to moist	None	0955
	· k						
-							

Consistencey (clays): Density (sands/silts): Very soft, Soft, Firm, Stiff or Very Stiff. Very loose, loose, med-dense, dense, v.dens

e-Certified Analytical Laboratory Res Soil - Pace Analytical L1326377
Soil - Face Analytical LISZ0377

Pace Analytical ANALYTICAL REPORT

Weber, Hayes & Associates - CA

Sample Delivery Group: L1326377 Samples Received: 03/12/2021 Project Number: 2t058

Description:

Site: 333 GOLF CLUB DR SANTA CRUZ

Report To: Ryan Nyberg

> 120 Westgate Drive Watsonville, CA 95076

Entire Report Reviewed By:

³Ss

⁶Qc

⁷Gl

Brian Ford Project Manager

TABLE OF CONTENTS

Cp: Cover Page	
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
B-1-D0 L1326377-01	8
B-1-D1.5 L1326377-02	9
B-2-D0 L1326377-03	10
B-2-D1.5 L1326377-04	1
B-3-D0 L1326377-05	12
B-3-D1.5 L1326377-06	13
B-4-D0 L1326377-07	14
B-4-D1.5 L1326377-08	15
B-5-D0 L1326377-09	16
B-5-D1.5 L1326377-10	17
B-6-D0 L1326377-11	18
B-6-D1.5 L1326377-12	19
B-7-D0 L1326377-13	20
B-7-D1.5 L1326377-14	2
B-8-D0 L1326377-15	22
B-8-D1.5 L1326377-16	23
B-9-D0 L1326377-17	24
B-9-D1.5 L1326377-18	25
B-10-D0 L1326377-19	26
B-10-D1.5 L1326377-20	27
B-11-D0 L1326377-21	28
B-11-D1.5 L1326377-22	29
B-12-D0 L1326377-23	30
B-12-D1.5 L1326377-24	3
Qc: Quality Control Summary	32
Total Solids by Method 2540 G-2011	32
Metals (ICPMS) by Method 6020	36
GI: Glossary of Terms	38
Al: Accreditations & Locations	39
Sc: Sample Chain of Custody	40

			Collected by	Collected date/time	Received da	ite/time
B-1-D0 L1326377-01 Solid			Ryan Nyberg	03/11/21 00:00	03/12/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634799 WG1634311	1 5	03/16/21 08:52 03/15/21 08:56	03/16/21 09:00 03/16/21 00:31	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-1-D1.5 L1326377-02 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received da 03/12/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634799 WG1634311	1 5	03/16/21 08:52 03/15/21 08:56	03/16/21 09:00 03/16/21 00:47	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-2-D0 L1326377-03 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received da 03/12/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634799 WG1634311	1 5	03/16/21 08:52 03/15/21 08:56	03/16/21 09:00 03/16/21 00:51	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-2-D1.5 L1326377-04 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received date/time 03/12/21 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634800 WG1634311	1 5	03/16/21 12:47 03/15/21 08:56	03/16/21 12:56 03/16/21 01:06	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-3-D0 L1326377-05 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received date/time 03/12/21 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634800 WG1634311	1 5	03/16/21 12:47 03/15/21 08:56	03/16/21 12:56 03/16/21 01:09	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-3-D1.5 L1326377-06 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received da 03/12/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634800 WG1634311	1 5	03/16/21 12:47 03/15/21 08:56	03/16/21 12:56 03/16/21 01:13	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-4-D0 L1326377-07 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received da 03/12/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
		1	03/16/21 12:47	03/16/21 12:56	KDW	Mt. Juliet. TN

	SAMPLES	SUMN	ЛАRY			
B-4-D1.5 L1326377-08 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received dat 03/12/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634800 WG1634311	1 5	03/16/21 12:47 03/15/21 08:56	03/16/21 12:56 03/16/21 01:20	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-5-D0 L1326377-09 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received dat 03/12/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634800 WG1634311	1 5	03/16/21 12:47 03/15/21 08:56	03/16/21 12:56 03/16/21 01:23	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-5-D1.5 L1326377-10 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received dat 03/12/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634800 WG1634311	1 5	03/16/21 12:47 03/15/21 08:56	03/16/21 12:56 03/16/21 01:27	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-6-D0 L1326377-11 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received date/time 03/12/21 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634800 WG1634311	1 5	03/16/21 12:47 03/15/21 08:56	03/16/21 12:56 03/16/21 01:30	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-6-D1.5 L1326377-12 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	e Received date/time 03/12/21 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634800 WG1634311	1 5	03/16/21 12:47 03/15/21 08:56	03/16/21 12:56 03/16/21 01:37	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-7-D0 L1326377-13 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received dat 03/12/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1634800	1	03/16/21 12:47	03/16/21 12:56	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1634311	5	03/15/21 08:56	03/16/21 01:54	TM	Mt. Juliet, TN
B-7-D1.5 L1326377-14 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received dat 03/12/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1634840	1	03/16/21 12:37	03/16/21 12:45	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1634311	5	03/15/21 08:56	03/16/21 01:58	TM	Mt. Juliet, TN

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	3 of 41

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	4 of 41

	SAMPLE S	SUMN	MARY			
B-8-D0 L1326377-15 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received da 03/12/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634840 WG1634311	1 5	03/16/21 12:37 03/15/21 08:56	03/16/21 12:45 03/16/21 02:01	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-8-D1.5 L1326377-16 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received da 03/12/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634840 WG1634311	1 5	03/16/21 12:37 03/15/21 08:56	03/16/21 12:45 03/16/21 02:05	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-9-D0 L1326377-17 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received da 03/12/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634840 WG1634311	1 5	03/16/21 12:37 03/15/21 08:56	03/16/21 12:45 03/16/21 02:09	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-9-D1.5 L1326377-18 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received da 03/12/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634840 WG1634311	1 5	03/16/21 12:37 03/15/21 08:56	03/16/21 12:45 03/16/21 02:12	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-10-D0 L1326377-19 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received date/time 03/12/21 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634840 WG1634311	1 5	03/16/21 12:37 03/15/21 08:56	03/16/21 12:45 03/16/21 02:16	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-10-D1.5 L1326377-20 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received da 03/12/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634840 WG1634316	1 5	03/16/21 12:37 03/15/21 14:09	03/16/21 12:45 03/16/21 10:46	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-11-D0 L1326377-21 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received da 03/12/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634840 WG1634316	1 5	03/16/21 12:37 03/15/21 14:09	03/16/21 12:45 03/16/21 10:50	KDW TM	Mt. Juliet, TN Mt. Juliet, TN

S	AMPLE S	SUMN	ИARY			
B-11-D1.5 L1326377-22 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received dat 03/12/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634840 WG1634316	1 5	03/16/21 12:37 03/15/21 14:09	03/16/21 12:45 03/16/21 10:53	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-12-D0 L1326377-23 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received dat 03/12/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634840 WG1634316	1 5	03/16/21 12:37 03/15/21 14:09	03/16/21 12:45 03/16/21 10:57	KDW TM	Mt. Juliet, TN Mt. Juliet, TN
B-12-D1.5 L1326377-24 Solid			Collected by Ryan Nyberg	Collected date/time 03/11/21 00:00	Received dat 03/12/21 09:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011 Metals (ICPMS) by Method 6020	WG1634841 WG1634316	1 5	03/16/21 11:23 03/15/21 14:09	03/16/21 11:32 03/16/21 11:00	KDW TM	Mt. Juliet, TN Mt. Juliet, TN

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	5 of 41

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	6 of 41

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory, as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford Project Manager

¹ Cp	
² Tc	
3Ss	
⁴ Cn	
⁵ Sr	
⁶ Qc	
⁷ Gl	
⁸ Al	
9_	

)			
_			
-			
_			
	ì		
ì			
_			
-			
_			
-			

B-1-D0 Collected date/time: 03/11	IPLE RESULTS - 01							
Total Solids by Meth	nod 2540 G-20)11						
	Result	Qualifier	Dilution	Analysi	is	Batch		
Analyte	%			date / t	ime			
Total Solids	87.5		1	03/16/2	2021 09:00	WG1634	799	
Metals (ICPMS) by M	lethod 6020							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	1	mg/kg		date / time	
Lead	13.9		0.113		2.29	5	03/16/2021 00:31	<u>WG1634311</u>

PAGE:

				33333	10101111111				
B-1-D1.5 Collected date/time: 03/11/21 0	0:00		SAM	PLE	RESUL	.TS - (02		
Total Solids by Method :	2540 G-20	11							1
	Result	Qualifier	Dilution	Analysi		Batch			Ср
Analyte	%			date / ti					2
Total Solids	85.2		1	03/16/2	021 09:00	WG16347	799		² Tc
Metals (ICPMS) by Metho	od 6020								3 Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	1	mg/kg		date / time		⁴ Cn
Lead	5.68		0.116		2.35	5	03/16/2021 00:47	WG1634311	Ü.,
									⁵ Sr
									⁶ Qc
									⁷ Gl
									⁸ Al
									⁹ Sc

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	10 of 41

					10111111111			
B-2-D1.5 Collected date/time: 03	3/11/21 00:00		SAM	PLE	RESUL	-TS - (04	
Total Solids by Me	ethod 2540 G-20)11						
Analyte Total Solids	Result % 79.6	Qualifier	Dilution	Analysis date / ti 03/16/2		Batch WG16348	300	
Metals (ICPMS) by	Method 6020							
Analyte	Result (dry) mg/kg	Qualifier	MDL (mg/kg		RDL (dry) mg/kg	Dilution	Analysis date / time	Batch
Lead	7.61		0.124		2.51	5	03/16/2021 01:06	WG1634311

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	12 of 41

B-3-D1.5			SAMI	PLE	RESUI	LTS - (06		
Collected date/time: 03/11/	21 00:00				L1326377				
Total Solids by Metho	od 2540 G-20)11							
	Result	Qualifier	Dilution	Analysis	;	Batch			
Analyte	%			date / tir	me				
Total Solids	80.7		1	03/16/20	02112:56	WG16348	800		
Metals (ICPMS) by Me	ethod 6020								
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	1	mg/kg		date / time		
Lead	6.54		0.123		2.48	5	03/16/2021 01:13	WG1634311	

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	14 of 41

B-4-D1.5 Collected date/time: 0	03/11/21 00:00		SAMPLE	RESUI	_TS -	08		
Total Solids by M	lethod 2540 G-20	011						1
	Result	Qualifier	Dilution Analy		Batch			
Analyte	%			/ time				2
Total Solids	77.5		1 03/16	/202112:56	WG1634	800		
Metals (ICPMS) by	y Method 6020							3
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Lead	10.6		0.128	2.58	5	03/16/2021 01:20	WG1634311	Ľ
								5
								6
								Ľ
								7
								L
								8
								Š.
								9
								9 (

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	16 of 41

			22222						
B-5-D1.5 Collected date/time: 03/	11/21 00:00		SAM	PLE	RESUI	LTS -	10		
Total Solids by Met	thod 2540 G-20	011							1
	Result	Qualifier	Dilution	Analys		Batch			
Analyte Total Solids	% 86.7		1	date /	time 2021 12:56	WG16348	<u>300</u>		Tc
Metals (ICPMS) by I	Method 6020								3 Ss
Analyte	Result (dry) mg/kg	Qualifier	MDL mg/kg		RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	4 Cr
Lead	5.74		0.114		2.31	5	03/16/2021 01:27	WG1634311	_
									⁵ Sr
									⁶ Qc
									⁷ GI
									⁸ AI
									⁹ Sc

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	18 of 41

Total Solids by Method 2540 G-2011 Analyte	Collected date/time: 03	/11/21 00:00				L1326377				
Analyte % date / time Total Solids 78.3 1 03/16/202112:56 WG1634805 Metals (ICPMS) by Method 6020 Result (dry) Qualifier mg/kg MDL (dry) mg/kg Dilution blution date / time Analysis date / time	Total Solids by Me	ethod 2540 G-20	O11							1
Total Solids 78.3 1 0.3/16/202112:56 WG1634800			Qualifier	Dilution	,		Batch			
Metals (ICPMS) by Method 6020 Result (dry) mg/kg MDL (dry) MDL (d										2_
Result (dry) <u>Qualifier</u> MDL (dry) RDL (dry) <u>Dilution</u> Analysis <u>Batch</u> Analyte mg/kg mg/kg date / time	Total Solids	78.3		1	03/16/20	2112:56	WG16348	300		
Analyte mg/kg mg/kg mg/kg date / time	Metals (ICPMS) by	Method 6020								3
, , , , , , , , , , , , , , , , , , , ,		Result (dry)	Qualifier	MDL	(dry)	RDL (dry)	Dilution	Analysis	Batch	
Lead 9.61 0.127 2.56 5 03//6/2021 01:37 WG1634311	Analyte	mg/kg		mg/k	g	mg/kg		date / time		4
	Lead	9.61		0.127	7	2.56	5	03/16/2021 01:37	WG1634311	Ľ
										5
										6
										7 (
										8 4
										9

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	20 of 41

B-7-D1.5 Collected date/time:	03/11/21 00:00		SAM	PLE RESU	LTS -	14		
Total Solids by N	Method 2540 G-20	011						1
	Result	Qualifier	Dilution	Analysis	Batch			
Analyte	%			date / time	11104004	0.40		2
Total Solids	81.8		1	03/16/2021 12:45	WG1634	840		
Metals (ICPMS) b	by Method 6020							3
	Result (dry)	Qualifier	MDL (dry) RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg			date / time		4
Lead	15.2		0.121	2.44	5	03/16/2021 01:58	WG1634311	L
								5
								6
								7
								8
								9

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	22 of 41

B-8-D1.5 Collected date/time:	03/11/21 00:00	9	SAM	PLE RESU	ILTS -	16		
Total Solids by M	lethod 2540 G-20	011						1
Analyte Total Solids	Result % 82.1		Dilution 1	Analysis date / time 03/16/2021 12:45	Batch WG16348	840		
Metals (ICPMS) b	y Method 6020							3
Analyte	Result (dry) mg/kg	Qualifier	MDL (d mg/kg		Dilution	Analysis date / time	Batch	4
Lead	5.25		0.121	2.44	5	03/16/2021 02:05	WG1634311	L
								5
								6
								7
								8
								9

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weher Hayes & Associates - CA	21058	I 1326377	03/18/21 10:37	24 of 41

B-9-D1.5 Collected date/time: 0	3/11/21 00:00		OAIVI		326377	LTS -	10		
Total Solids by M	ethod 2540 G-20	D11							
Analyte	Result %	Qualifier	Dilution	Analysis date / time		Batch			
Total Solids	80.8		1 03/16/202112:45		WG1634840				
Metals (ICPMS) by	/ Method 6020								
Analyte	Result (dry) mg/kg	Qualifier	MDL (mg/kg		PDL (dry) ng/kg	Dilution	Analysis date / time	Batch	
Lead	7.16		0.123	2	.47	5	03/16/2021 02:12	WG1634311	

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	26 of 41

B-10-D1.5 Collected date/time: 03	3/11/21 00:00	S	SAM	PLE RESU	LTS - 2	20		
Total Solids by Me	ethod 2540 G-20	011						1
Analyte	Result %	Qualifier	Dilution	Analysis date / time	Batch			Cr
Total Solids	84.2		1	03/16/2021 12:45	WG16348	<u>340</u>		² Tc
Metals (ICPMS) by	Method 6020							3 Ss
Analyte	Result (dry) mg/kg	Qualifier	MDL (mg/kg		Dilution	Analysis date / time	Batch	4Cr
Lead	7.32		0.118	2.38	5	03/16/2021 10:46	WG1634316	
								⁵Sr
								⁶ Q(
								⁷ Gl
								⁸ AI
								⁹ Sc

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	28 of 41

B-11-D1.5 Collected date/time: 0	3/11/21 00:00	!	SAMP	LE RESUL	_TS - 2	22		
Total Solids by M	ethod 2540 G-20	011						1
	Result	Qualifier		nalysis	Batch			Cp
Analyte	%			ate / time				2
Total Solids	85.7		1 0	3/16/2021 12:45	WG16348	840		² Tc
Metals (ICPMS) by	y Method 6020							3Ss
	Result (dry)	Qualifier	MDL (dry) RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Lead	5.06		0.116	2.33	5	03/16/2021 10:53	WG1634316	
								⁵ Sr
								⁶ Qc
								<u></u>
								⁷ GI
								Al
								°Sc
								°Sc

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	30 of 41

SAMPLE RESULTS - 24 B-12-D1.5 Collected date/time: 03/11/21 00:00 Total Solids by Method 2540 G-2011 Qualifier Dilution Analysis Batch Analyte date / time ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc 84.9 03/16/2021 11:32 WG1634841 Total Solids

Metals (ICPMS) by Method 6020

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	L
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Lead	7.00		0.117	2.35	ς.	03/16/2021 11:00	WG1634316	Ĺ

WG163479		11		QUALIT	TY CONTROL SUMMARY L1326377-01.02.03	
Method Blank (M	1B)				in the second	
(MB) R3631692-1 03/16	5/21 09:00					Ср
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	%		%	%		Tc
Total Solids	0.000					
						Ss
L1326366-01 Ori	•	. ,				⁶ Cn
(OS) L1326366-01 03/	16/21 09:00 • (DUF	P) R3631692-3	03/16/21 (9:00		CII
	Original Result	t DUP Result	Dilution	DUP RPD <u>DUP Qualifier</u>	DUP RPD Limits	5 Sr
Analyte	%	%		%	%	JI.
Total Solids	62.7	59.2	1	5.88	10	[®] Qc
Laboratory Cont	rol Sample (L	CS)			7	GI
(LCS) R3631692-2 03/	16/21 09:00					
	Spike Amount		LCS Rec.		ualifier s	AI
Analyte	%	%	%	%		Al
Total Solids	50.0	50.0	100	85.0-115	[Sc

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Wahar Haves & Associates - CA	21058	I 1326377	03/19/21 10/37	32 of 41

WC1C240	00				OLIALIT	TV CONTROL CHIMMARY	
WG16348	UU lethod 2540 G-20	11				TY CONTROL SUMMARY 26377-04,05,06,07,08,09,10,11,12,13	
Method Blank							la de la companya de
(MB) R3631725-1 03							ГСр
(,	MB Result	MB Qualifier	MB MDL	MB RDL			2
Analyte	%		%	%			² Tc
Total Solids	0.00100						
							³ Ss
1 1226277 OF C	Original Sample	(OS) D.	nlicato /	(DLID)			
		1 /		. ,			⁴ Cn
	03/16/21 12:56 • (DUP) R3631725-3	03/16/21 12	2:56		NIIP PPN	⁴Cn
) R3631725-3		. ,	DUP Qualifier	DUP RPO Limits	
(OS) L1326377-05 (03/16/21 12:56 • (DUP) R3631725-3	03/16/21 12	2:56 DUP RPD %	DUP Qualifier		4Cn
(OS) L1326377-05 (Analyte	03/16/21 12:56 • (DUP Original Result) R3631725-3 : DUP Result	03/16/21 12	2:56 DUP RPD	DUP Qualifier	Limits	⁵ Sr
(OS) L1326377-05 (Analyte	03/16/21 12:56 • (DUP Original Result) R3631725-3 : DUP Result %	03/16/21 12 Dilution	2:56 DUP RPD %	DUP Qualifier	Limits %	
(OS) L1326377-05 C Analyte Total Solids	03/16/2112:56 • (DUP Original Result % 84.4) R3631725-3 : DUP Result % 84.5	03/16/21 12 Dilution	2:56 DUP RPD %	DUP Qualifier	Limits %	⁵ Sr
(OS) L1326377-05 C Analyte Total Solids Laboratory Co	03/16/21 12:56 • (DUP Original Result % 84.4 ntrol Sample (L) R3631725-3 : DUP Result % 84.5	03/16/21 12 Dilution	2:56 DUP RPD %	DUP Qualifier	Limits %	⁵ Sr
(OS) L1326377-05 C Analyte Total Solids Laboratory Co	03/16/21 12:56 • (DUP Original Result % 84.4 ntrol Sample (L 03/16/21 12:56) R3631725-3 : DUP Result % 84.5	03/16/21 12 Dilution	2:56 DUP RPD % 0.118		Limits % 10	°Sr °Oc
(OS) L1326377-05 C Analyte Total Solids Laboratory Co (LCS) R3631725-2 C	03/16/21 12:56 • (DUP Original Result % 84.4 ntrol Sample (L) R3631725-3 : DUP Result % 84.5	03/16/21 12 Dilution	2:56 DUP RPD % 0.118		Limits % 10	⁵ Sr
(OS) L1326377-05 C Analyte Total Solids	03/16/21 12:56 • (DUP Original Result % 84.4 ntrol Sample (L 03/16/21 12:56 Spike Amount) R3631725-3 : DUP Result % 84.5	O3/16/2112 Dilution 1 LCS Rec.	2:56 DUP RPD % 0.118 Rec. Lim	nits <u>LCS Qua</u>	Limits % 10	⁸ Sr ⁹ Qc
(OS) L1326377-05 C Analyte Total Solids Laboratory Co (LCS) R3631725-2 C Analyte	03/16/21 12:56 • (DUP Original Result % 84.4 ntrol Sample (L 03/16/21 12:56 Spike Amount %) R3631725-3 : DUP Result % 84.5 CS) LCS Result %	Dilution 1 LCS Rec.	2:56 DUP RPD % 0.118 Rec. Lim %	nits <u>LCS Qua</u>	Limits % 10	Sr °ac

Method Blank	(MB)					1 Cp
(MB) R3631724-1 0						
Analyte	MB Result	MB Qualifier	MB MDL %	MB RDL %		² Tc
Total Solids	0.00300					
						3Ss
L1326377-16 C	Original Sample	(OS) • Dup	olicate (D	DUP)		4
	Original Sample 03/16/21 12:45 • (DUP)					⁴ Cn
		R3631724-3 C			DUP RPD	5
(OS) L1326377-16 (03/16/21 12:45 • (DUP)	R3631724-3 C	3/16/21 12:	45		⁴ Cn ⁵ Sr
(OS) L1326377-16 (Analyte	03/16/2112:45 • (DUP) Original Result	R3631724-3 C	3/16/21 12:	45 DUP RPD DUP Qualifier	Limits	⁵ Sr
(OS) L1326377-16 (Analyte	03/16/2112:45 • (DUP) Original Result %	R3631724-3 C DUP Result %	03/16/21 12: Dilution	45 DUP RPD DUP Qualifier	Limits %	5
(OS) L1326377-16 (Analyte Total Solids	03/16/2112:45 • (DUP) Original Result %	R3631724-3 C DUP Result % 82.7	03/16/21 12: Dilution	45 DUP RPD DUP Qualifier	Limits %	5Sr 6Qc
(OS) L1326377-16 (Analyte Total Solids Laboratory Cc	03/16/21 12:45 • (DUP) Original Result % 82:1	R3631724-3 C DUP Result % 82.7	03/16/21 12: Dilution	45 DUP RPD DUP Qualifier	Limits %	⁵ Sr
(OS) L1326377-16 (Analyte Total Solids	03/16/21 12:45 • (DUP) Original Result % 82:1	R3631724-3 C DUP Result % 82.7	03/16/21 12: Dilution	.45 DUP RPD DUP Qualifier % 0.719	% 10	5Sr 6Qc

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:	ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	33 of 41	Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	34 of 41

WG16348				Q	UALIT	Y CONTROL SUMMARY	
Total Solids by M	ethod 2540 G-20	11				L1326377-24	
Method Blank	(MB)						¹cr
(MB) R3631722-1 03							
	MB Result	MB Qualifier	MB MDL				2_
Analyte	%		%	%			
Total Solids	0.000						3
							[*] Ss
11326381-02 0	riginal Sample	(OS) • Dur	olicate ('DUP)			<u> </u>
L1326381-02 C							
	3/16/21 11:32 • (DUP)	R3631722-3 0	3/16/21 11:3	32		DIR GRO	^⁴ Cr
	3/16/21 11:32 • (DUP) Original Result	R3631722-3 0 DUP Result		32	DUP Qualifier	DUP RPD Limits	E
(OS) L1326381-02 0	3/16/21 11:32 • (DUP)	R3631722-3 0 DUP Result %	3/16/21 11:3	32 DUP RPD %	DUP Qualifier		=
	3/16/21 11:32 • (DUP) Original Result	R3631722-3 0 DUP Result	3/16/21 11:3	32 DUP RPD	DUP Qualifier	Limits	⁵ Sr
(OS) L1326381-02 0	3/16/21 11:32 • (DUP) Original Result	R3631722-3 0 DUP Result %	3/16/21 11:3 Dilution	32 DUP RPD %	DUP Qualifier	Limits %	⁵ Sr
(OS) L1326381-02 O Analyte Total Solids	3/16/21 11:32 • (DUP) Original Result % 89.0	R3631722-3 O DUP Result % 87.1	3/16/21 11:3 Dilution	32 DUP RPD %	<u>DUP Qualifier</u>	Limits %	⁵ Sr
(OS) L1326381-02 O Analyte Total Solids Laboratory Co	3/16/21 11:32 • (DUP) Original Result % 89.0	R3631722-3 O DUP Result % 87.1	3/16/21 11:3 Dilution	32 DUP RPD %	DUP Qualifier	Limits %	⁵ Sr
(OS) L1326381-02 O Analyte Total Solids Laboratory Co	3/16/21 11:32 • (DUP) Original Result % 89.0 ntrol Sample (L) 3/16/21 11:32	R3631722-3 0 DUP Result 87.1 CS)	3/16/21 11:3 Dilution	DUP RPD % 2.22		Limits %.	⁵ Sr
(OS) L1326381-02 O Analyte Total Solids Laboratory Co (LCS) R3631722-2 O	3/16/21 11:32 • (DUP) Original Result % 89.0 ntrol Sample (L) 3/16/21 11:32 Spike Amount	R3631722-3 O DUP Result % 87.1 CS)	03/16/21 11:3 Dilution 1	DUP RPD % 2.22		Limits %.	E
(OS) L1326381-02 O Analyte Total Solids	3/16/21 11:32 • (DUP) Original Result % 89.0 ntrol Sample (L) 3/16/21 11:32	R3631722-3 0 DUP Result 87.1 CS)	3/16/21 11:3 Dilution	DUP RPD % 2.22		Limits %.	ssr cac rgl

Metals (ICPMS) b	by Method 6020			L132637	7-01,02,03,04	1,05,06,07,08,0	9,10,11,12	,13,14,15,16,1	7,18,19					
Method Blank	(MB)													10
(MB) R3631049-1 0	03/16/21 00:24													
	MB Result	MB Qualifier	MB MDL	MB RDL										2_
Analyte	mg/kg		mg/kg	mg/kg										[*] T
Lead	U		0.0990	2.00										_
														l*s
														-
Laboratory Co	antral Cample // /	CC)												Ľ
	ontrol Sample (Lo	CS)												4
	03/16/21 00:28													
(LCS) R3631049-2	03/16/21 00:28 Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	:								
(LCS) R3631049-2 Analyte	03/16/21 00:28 Spike Amount mg/kg	LCS Result	%	%	LCS Qualifier									
(LCS) R3631049-2 Analyte	03/16/21 00:28 Spike Amount	LCS Result			LCS Qualifier	:								4
(LCS) R3631049-2 Analyte	03/16/21 00:28 Spike Amount mg/kg	LCS Result	%	%	LCS Qualifier	:								
(LCS) R3631049-2 Analyte Lead	03/16/21 00:28 Spike Amount mg/kg 100	LCS Result mg/kg 96.1	% 96.1	% 80.0-120		•								4 C
(LCS) R3631049-2 Analyte Lead L1326377-01 (03/16/21 00:28 Spike Amount mg/kg 100 Original Sample	LCS Result mg/kg 96.1	% 96.1 rix Spike (M	% 80.0-120 IS) • Matrix	x Spike Du	plicate (MSI	D)							5 5
(LCS) R3631049-2 Analyte Lead L1326377-01 (03/16/21 00:28 Spike Amount mg/kg 100 Driginal Sample 03/16/21 00:31 • (MS) R	LCS Result mg/kg 96.1 (OS) • Matr 3631049-5 03	% 96.1 rix Spike (M 8/16/21 00:41 • (N	% 80.0-120 IS) • Matrix MSD) R363104	x Spike Du	plicate (MSI	D)							4 C
(LCS) R3631049-2 Analyte Lead L1326377-01 (03/16/21 00:28 Spike Amount mg/kg 100 Driginal Sample 03/16/21 00:31 • (MS) R	LCS Result mg/kg 96.1	% 96.1 rix Spike (M 8/16/21 00:41 • (N	% 80.0-120 IS) • Matrix MSD) R363104	x Spike Du	plicate (MSI	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	5	5 5

PROJECT: 2t058 SDG: L1326377 DATE/TIME: 03/18/21 10:37 PAGE: 36 of 41

Metals (ICPMS) t	y Method 6020				<u>L1</u>	326377-20,21,2	2,23,24						
Method Blank	: (MB)												1
MB) R3631186-1 03	3/16/21 09:50												 [
	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte	mg/kg		mg/kg	mg/kg									
.ead	U		0.0990	2.00									
aboraton/ Co	ontrol Sample (LO	CC1											L
		50)											l
LCS) R3631186-2 (03/16/21 09:53 Spike Amount	1000	LCS Rec.	Rec. Limits	1000 100								L
Analyte	Spike Amount mg/kg	mg/kg	%	Kec. Limits	LCS Qualifier								
Lead	100	90.5	90.5	80.0-120									
	100	30.3	30.3	00.0 120									
	Original Sample	(OS) • Mat	rix Spike	(MS) · Matr	ix Spike Du	plicate (MS	D)						
_1326390-02				AACD) DOCOSS	36-6 03/16/211	0:11							
	,	R3631186-5 03	3/16/21 10:07									PPP 11 14	
L1326390-02	03/16/21 09:57 • (MS)	R3631186-5 03 Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
	03/16/21 09:57 • (MS)					MSD Rec. %	Dilution	Rec. Limits %	MS Qualifier	MSD Qualifier	RPD %	%	8
OS) L1326390-02	03/16/21 09:57 • (MS) Spike Amount	Original Result	MS Result	MSD Result	MS Rec.		Dilution 5		MS Qualifier	MSD Qualifier			
OS) L1326390-02 Analyte	03/16/21 09:57 • (MS) Spike Amount mg/kg	Original Result mg/kg	MS Result mg/kg	MSD Result mg/kg	MS Rec. %	%		%	MS Qualifier	MSD Qualifier	%	%	

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	37 of 41

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional guestions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrx, Sample Preservation, Field Banks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Appreviations a	and Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and patiently is discussion of possible implications of the Qualifier is the Case National Conference of the Cas

	potentially a discussion of possible implications of the addition in the case retrieve in applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column any state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.

Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
---------------------------------	------------------------------

	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol
Case Narrative (Cn)	observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will
	he a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report

This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material. Quality Control Summary (Qc)

This is the document created in the field when your samples were initially collected. This is used to verify the time and Sample Chain of Custody (Sc)

date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis. This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported. Sample Results (Sr)

This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis. Sample Summary (Ss)

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCOUNT: PRO IECT: SDG: DATE/TIME PAGE: Weber, Hayes & Associates - CA L1326377 03/18/21 10:37 38 of 41

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
laska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico 1	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
eorgia	NELAP	North Carolina 3	41
Seorgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Cansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
ouisiana	Al30792	Tennessee 1 4	2006
ouisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Weber, Hayes & Associates - CA	2t058	L1326377	03/18/21 10:37	39 of 41

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Weber, Hayes & Ass 120 Westgate Drive, Watson	Laboratory: Pace	Chain of Cus	tody				Analysis Re-					
Site Name 333 Golf C & Location: Sampler Name: Ryan Nyberg	Geotracker ID:		PHA July II	21058		10			150			
Email report to : Lith@wither-lith	es a market	Also Email report to:	(stediese)	PRI (2003)	ed entro	MATERIAL PROPERTY.	000 00					
urnaround Time (work days: check	ore): O = NORMA	U = 1 Day RUSH	O = 2 Day RUSH	O = 3 Day RUSH			Metho					
Sample Identification		Sample Info	Sample Containers			1 2			Notes			
WHA ID #	Depth (ft)	Date/Time Matrix.			Metal Glass Fas Glass Sar Liner (Ann) (Box)					To Lab		
8-7-do	0	3-11-21	Soll	-		Str	X	1013		13 26377 /3		
B-7-d15	1.5				-39		×			14		
B-8-do	0				18.		X			15		
B-8-d15	1.5		1000				X			16		
8-9-10	0	The Property					×		1100	17		
B-9-d1.5	1.5				119		X			17		
B-10-d0	0			-			x			19		
8-10-41-5	1.5	1		100			X			20		
B-11-d0	0						x		S	21		
B-11-d1.5	1.5						X			22		
8-12-20	0				483		X		S(F) (B)	23		
B-12-d1.5	1.5		+		-		X			24		
Released By: Emanbat HINT NAME Released By: PRINT NAME Released By:	ery.	Date & Time:	MINN HANGEATED	Reci	eived By: selved By: selved By: selved By:	-	allie I	Correta	3-11-21	6 1300 6 1%		

1886 0600 4673

OC Sail Fream Little of The Tribution of Tribut

Previous Testing Res	ults in the Vicinity -	RMD, August 2020

PRELIMINARY ENDANGERMENT ASSESSMENT REPORT

Pogonip Farm and Garden 333 Golf Club Drive Santa Cruz, California

01-DTSC-002

Prepared For: California Environmental Protection Agency Department of Toxic Substances Control 700 Heinz Avenue Berkeley, California 94710

Contract No. 19-T4727

Prepared By:

1371 Oakland Boulevard, Suite 200 Walnut Creek, California 94596

August 10, 2020

Day well Douglas Whichard **Project Scientist**

wymouse

lvy Inouye

Principal Toxicologist

Khaled Rahman,

Principal Hydroged

Table 1 Metals in Soil Pogonip Farm and Garden Santa Cruz, California

	Sample ID	Date	Sample Depth	Depth Shot Observed	XRF Reading	Notes	Antimony	Antimony		Arsenic			Lead		Zinc	
WHAC-1457 \$715000			(feet bgs)	(feet bgs)		round Level ¹							(mg/kg) 140			
WMC-C1-0.5 \$1/3/2000 00.5 \$22					/el ² 31						80		23,000			
WMC-1-0.5				Con	nmercial Scre	ening Level ²			0.36		47,000		320		350,000	
WMC-C-120 S112000 O.05 O.05 O.09 O.09 O.09 O.00	WM C-1-0.5'	5/13/2020	0.05	1	222				2.63	1	12.3	Т	181	1	23.9	T
WM C 2 9 F							-	,	-		-				-	
WM.C-2 22 \$5/13/2020 15-2 264		5/13/2020						J		J					15.3	
WM.C. S. ST1/12/200 C. S. 244						Duplicate	1.57	J	2.45		7.54				13.6	
WMAC-6-12							1 23		21/		9.38				53.6	
WM.C-61-05 ST13/2000 0.05 348 0.083 J 1.72 J 6.96 1.141 WM.C-6.05 ST13/2000 0.05 93 0.568 J 1.58 J 77.7 01 76.9 01 WM.C-6.05 ST13/2000 0.05 93 0.568 J 1.58 J 77.7 01 76.9 01 WM.C-6.05 ST14/2000 0.05 30 0.987 J 2.251 4.73 8.57 01 WM.C-6.05 ST14/2000 0.05 313 0.785 J 2.251 4.73 8.57 01 WM.C-6.05 ST14/2000 0.05 313 0.785 J 2.251 4.73 8.57 01 WM.C-6.05 ST14/2000 0.05 315 0.897 J 2.261 4.73 8.57 01 WM.C-6.05 ST14/2000 0.05 315 0.897 J 2.261 4.73 8.57 01 WM.C-6.05 ST14/2000 0.05 4.5 1.147 J 2.269 8.57 1.181 WM.C-6.05 ST14/2000 0.05 4.5 1.147 J 2.269 8.57 1.188 WM.C-6.05 ST14/2000 0.05 4.5 1.147 J 2.269 8.57 1.188 WM.C-6.05 ST14/2000 0.05 4.5 1.147 J 2.269 8.57 1.188 WM.C-6.05 ST14/2000 0.05 4.5 4.147 J 2.269 8.57 1.188 WM.C-6.05 ST14/2000 0.05 4.6 4.22 2.274 1.141 J 2.269 8.57 1.188 WM.C-6.05 ST14/2000 0.05 4.6 4.22 2.274 1.141 J 2.269 8.57 1.188 WM.C-6.05 ST14/2000 0.05 4.6 4.22 2.274 4.10								J		J					-	
WM-C-0.0							0.683	J	1.92	J	6.96				15	
WM.C.O.S. \$140200 0.05 30															-	
WM-C-0-05										J		01		01	78.5 19.7	01
WM.C.G.O.S. S140200															19.7 59.1	
WM-C-0-A-1															31.0	
WM-G-11-05								J		J					18.6	
WM-DG-1-05			0 - 0.5				1.65	J					27.0		26.6	
WM-DG-1-2												<u> </u>		<u> </u>	24.3	
WM-DQ-2-0.5								J				1		<u> </u>	16.4	
WM.DG.3.05												1			12.9	
WM.DQ-5-02 51/32020								J		J		L			23.0	
WM-DG-6-02 57/3/2020															28.3	
WM-DG-7-22 S1/3/2020										J		1			23.1	
WM.DG-92												 		1	18.5 17.0	
WM.DG-8-05								J		J					17.0	
WM.DG:10.05' S/13/2020								J		J				 	21.0	
WM-DG-11-0.5 S/14/2020	WM-DG-9-0.5'		0 - 0.5		28		<2.31		1.52	J	299		17.5		91.1	
WM-DG-11-0.5-DUP								J							25.0	
WM-DG-114-11 S/15/2020 0.5 - 1 16				0.5.0		D li t .									689	
WM.DG-12-0.5 S714/2020 0-0.5 0				0.5-2		Duplicate		J							75.8 15.6	
WM-DG-13-1.5' S/14/2020 1-1.5 1-2 33 3.33 3.33 3.61 B 214 49.0								J							51.6	
WM-DG-13-2' S714/2020 1.5-2 33 3.33 3.33 3.34 8 214 49.0 WM-DG-14-05' S714/2020 0.0.5 19 0.817 J 2.82 8 8.28 13.8 J WM-DG-15.05' S714/2020 0.0.5 23 1.80 J 2.17 B,J 76.9 23.8 J J J J J J J J J	WM-DG-13-1.5'			1.2				J							28,500	
WM-DG-15-0.5' 5/14/2020				1-2											2,770	
North Orchard Strike North Orchard Strike North Orchard North Orch															40.8 303	
NO-1-0.5' 5/14/2020 0-0.5 225 3.54 3.05 8 6.32 265 NO-1-2' 5/14/2020 1.5 - 2 225 -	WWI-DG-15-0.5	3/14/2020	0 - 0.3	<u> </u>	23				2.17	D,J	70.9		23.0	1	303	1
NO-2-0.5'	NO-1-0.5'	5/14/2020	0 - 0.5		225				3.05	В	6.32	Τ	265	ī	24.0	Т
NO-2-2'							-		i		-		6.55		-	
NO-3-0.5' 5/14/2020 0 - 0.5 863 6.94 4.77 B 11.3 620							1.65	J	1.94	B,J	8.14				17.6	
NO-3-2' 5/14/2020 1.5 - 2 35									- 4 77	D					21.5	
NO-4-0.5' 5/14/2020 0-0.5 211 2.03 J 1.60 B,J 8.16 180 NO-4-2' 5/14/2020 1.5-2 16 - - 3.97 NO-5-0.5' 5/14/2020 0-0.5 10 1.08 J 1.57 B,J 50.8 40.0 NO-6-0.5' 5/14/2020 0-0.5 118 1.97 J 2.32 B,J 23.2 144 NO-6-2' 5/14/2020 0-0.5 43 0.926 J 1.91 B,J 8.08 29.8 NO-8-0.5' 5/14/2020 0-0.5 43 0.926 J 1.91 B,J 8.08 29.8 NO-8-0.5' 5/15/2020 0-0.5 31 0.928 J <2.46 18.9 18.5 NO-9-0.5' 5/15/2020 0-0.5 37 1.51 J 1.70 B,J 14.4 20.0 NO-10-0.5' 5/15/2020 0-0.5 17 <2.33 <2.33 18.0 14.0 NO-11-0.5' 5/15/2020 0-0.5 18 1.04 J 0.655 J 15.0 14.5 NO-12-0.5' 5/15/2020 0-0.5 21 0.718 J <2.42 17.1 10.5 NO-12-0.5' 5/12/2020 0-0.5 153 1.93 J 2.42 24.6 182 EM-2-0.5' 5/12/2020 0-0.5 153 1.93 J 2.42 24.6 182 EM-2-2' 5/12/2020 1.5-2 15 - - 2.21 2.87 2.87 3.23 16.6 203 EM-3-2' 5/12/2020 1.5-2 24 - - - - - 13.4 EM-4-1.5' 5/12/2020 1.5-2 24 - -									4.77	ь						
NO-5-0.5'							2.03	J	1.60	B,J	8.16				15.7	
NO-6-0.5' 5/14/2020 0-0.5 118 1.97 J 2.32 B.J 23.2 144 NO-6-2' 5/14/2020 1.5-2 14 13.9 NO-7-0.5' 5/14/2020 0-0.5 43 0.926 J 1.91 B.J 8.08 29.8 NO-8-0.5' 5/15/2020 0-0.5 31 0.928 J <2.46 18.9 18.5 NO-9-0.5' 5/14/2020 0-0.5 37 1.51 J 1.70 B.J 14.4 20.0 NO-10-0.5' 5/15/2020 0-0.5 17 <2.33 <2.33 18.0 14.0 NO-11-0.5' 5/15/2020 0-0.5 18 1.04 J 0.655 J 15.0 14.5 NO-12-0.5' 5/15/2020 0-0.5 21 0.718 J <2.42 17.1 10.5 NO-12-0.5' 5/12/2020 0-0.5 21 0.718 J <2.42 17.1 10.5 NO-12-0.5' 5/12/2020 0-0.5 119 2.34 2.42 63.1 138 NO-12-0.5' 5/12/2020 1.5-2 39 1.51 1.9 1.9 2.42 24.6 182 1.9															-	
NO-6-2' 5/14/2020 1.5 - 2 14 - - -														ļ	44.2	
NO-7-0.5' 5/14/2020 0 - 0.5 43 0.926 J 1.91 B,J 8.08 29.8								J		R'1		1-		 	41.8	-
NO-8-0.5' 5/15/2020 0 - 0.5 31 0.928 J <2.46 18.9 18.5 NO-9-0.5' 5/14/2020 0 - 0.5 39 1.51 J 1.70 B _o J 14.4 20.0 NO-10-0.5' 5/15/2020 0 - 0.5 17 <2.33 <2.33 18.0 14.0 NO-11-0.5' 5/15/2020 0 - 0.5 18 1.04 J 0.655 J 15.0 14.5 NO-12-0.5' 5/15/2020 0 - 0.5 21 0.718 J <2.42 17.1 10.5 NO-12-0.5' 5/15/2020 0 - 0.5 21 0.718 J <2.42 17.1 10.5 NO-12-0.5' 5/15/2020 0 - 0.5 119 2.34 2.42 63.1 138 NO-12-0.5' 5/12/2020 1.5 - 2 39 2.4 2.42 24.6 182 NO-12-0.5' 5/12/2020 0 - 0.5 153 1.93 J 2.42 24.6 182 NO-12-0.5' 5/12/2020 0 - 0.5 153 1.93 J 2.42 24.6 182 NO-12-0.5' 5/12/2020 0 - 0.5 153 1.93 J 2.42 24.6 182 NO-12-0.5' 5/12/2020 0 - 0.5 155 1.93 J 2.87 3.23 16.6 203 NO-12-0.5' 5/12/2020 1.5 - 2 15 1.5								J		B,J		1			24.8	
NO-10-0.5' 5/15/2020 0 - 0.5 17 <2.33 <2.33 18.0 14.0										,-					23.1	
NO-11-0.5' 5/15/2020 0 - 0.5 18								J		B,J			20.0		26.7	
NO-12-0.5' 5/15/2020 0 - 0.5 21 0.718 J <2.42 17.1 10.5 East Meadow															27.5	
East Meadow EM-1-0.5'								-		J		1		ļ	26.8	-
EM-1-0.5' 5/12/2020 0 - 0.5 119 2.34 2.42 63.1 138 EM-1-2' 5/12/2020 1.5 - 2 39 - - - 22.1 EM-2-0.5' 5/12/2020 0 - 0.5 153 1.93 J 2.42 24.6 182 EM-2-2' 5/12/2020 1.5 - 2 15 - - - - 13.4 EM-3-0.5' 5/12/2020 1.5 - 2 15 - - - 13.4 - EM-3-0.5' 5/12/2020 1.5 - 2 24 - - - 51.3 - EM-3-2' 5/12/2020 1.5 - 2 24 - - - 51.3 - EM-4-1.5' 5/12/2020 1.5 - 2 47 - - - 51.8 164 EM-4-2' 5/12/2020 1.5 - 2 47 - - - 61.3 - EM-5-0.5' 5/12/2020 0 - 0.5 139 2.51 3.21 19.1 115 - - 53.6 - -	NO-12-0.5'	5/15/2020	0 - 0.5		21	<u> </u>			<2.42		17.1		10.5	_	49.8	
EM-1-2' 5/12/2020 1.5-2 39 - - - 22.1 22.1 EM-2-0.5' 5/12/2020 0-0.5 153 1.93 J 2.42 24.6 182 EM-2-2' 5/12/2020 1.5-2 15 - - - 13.4 - EM-3-0.5' 5/12/2020 0-0.5 219 2.87 3.23 16.6 203 - EM-3-2' 5/12/2020 1.5-2 24 - - - 51.3 - EM-4-1.5' 5/12/2020 1.5-1.5 166 5.15 4.58 15.8 164 - EM-4-2' 5/12/2020 1.5-2 47 - - - 61.3 - EM-5-0.5' 5/12/2020 1.5-2 95 - - - 53.6 - - 53.6 - - - 53.6 - - - 53.6 - - - - - - - - - - - - - - - -	EM-1-0 5'	5/12/2020	0-05		119				2.42		63.1	П	138		69.6	T
EM-2-0.5' 5/12/2020 0 - 0.5 153 1.93 J 2.42 24.6 182 EM-2-2' 5/12/2020 1.5 - 2 15 - - - 13.4 - EM-3-0.5' 5/12/2020 0 - 0.5 219 2.87 3.23 16.6 203 - EM-3-2' 5/12/2020 1.5 - 2 24 - - - 51.3 - EM-4-1.5' 5/12/2020 1 - 1.5 166 5.15 4.58 15.8 164 - EM-4-2' 5/12/2020 1.5 - 2 47 - - - 61.3 - EM-5-0.5' 5/12/2020 1.5 - 2 95 - - - 53.6 - EM-6-0.5' 5/12/2020 1.5 - 2 95 - - - 53.6 - EM-6-0.5' 5/12/2020 1.5 - 2 83 - - - 17.9 - EM-7-0.5' 5/12/2020 0 - 0.5 758 17.0 9.58 21.1 252							-				-				-	
EM-3-0.5' 5/12/2020 0 - 0.5 219 2.87 3.23 16.6 203 EM-3-2' 5/12/2020 1.5 - 2 24 - - - 51.3 EM-4-1.5' 5/12/2020 1.5 - 2 24 - - - 51.3 EM-4-1.5' 5/12/2020 1.5 - 2 47 - - - 61.3 EM-5-0.5' 5/12/2020 0 - 0.5 139 2.51 3.21 19.1 115 EM-5-2' 5/12/2020 1.5 - 2 95 - - - 53.6 EM-6-0.5' 5/12/2020 0 - 0.5 372 3.46 3.91 19.9 264 EM-6-2' 5/12/2020 1.5 - 2 83 - - - 17.9 EM-7-0.5' 5/12/2020 0 - 0.5 758 17.0 9.58 21.1 252	EM-2-0.5'	5/12/2020	0 - 0.5		153		1.93	J	2.42		24.6		182		31.0	
EM-3-2' 5/12/2020 1.5 - 2 24 - - 51.3 EM-4-1.5' 5/12/2020 1 - 1.5 166 5.15 4.58 15.8 164 EM-4-2' 5/12/2020 1.5 - 2 47 - - - 61.3 EM-5-0.5' 5/12/2020 0 - 0.5 139 2.51 3.21 19.1 115 EM-5-2' 5/12/2020 0 - 0.5 95 - - - - 53.6 EM-6-0.5' 5/12/2020 0 - 0.5 372 3.46 3.91 19.9 264 EM-6-2' 5/12/2020 1.5 - 2 83 - - - 17.9 EM-7-0.5' 5/12/2020 0 - 0.5 758 17.0 9.58 21.1 252															-	
EM-4-1.5' 5/12/2020 1 - 1.5 166 5.15 4.58 15.8 164 EM-4-2' 5/12/2020 1.5 - 2 47 - - - 61.3 EM-5-0.5' 5/12/2020 0 - 0.5 139 2.51 3.21 19.1 115 EM-5-2' 5/12/2020 1.5 - 2 95 - - - 53.6 EM-6-0.5' 5/12/2020 0 - 0.5 372 3.46 3.91 19.9 264 EM-6-2' 5/12/2020 1.5 - 2 83 - - - 17.9 EM-7-0.5' 5/12/2020 0 - 0.5 758 17.0 9.58 21.1 252												1		 	20.4	
EM-4-2' 5/12/2020 1.5 - 2 47 - - - 61.3 EM-5-0.5' 5/12/2020 0 - 0.5 139 2.51 3.21 19.1 115 EM-5-2' 5/12/2020 1.5 - 2 95 - - - 53.6 EM-6-0.5' 5/12/2020 0 - 0.5 372 3.46 3.91 19.9 264 EM-6-2' 5/12/2020 1.5 - 2 83 - - - 17.9 EM-7-0.5' 5/12/2020 0 - 0.5 758 17.0 9.58 21.1 252												1-		 	25.3	1
EM-5-2' 5/12/2020 1.5 - 2 95 - - - 53.6 EM-6-0.5' 5/12/2020 0 - 0.5 372 3.46 3.91 19.9 264 EM-6-2' 5/12/2020 1.5 - 2 83 - - - - 17.9 EM-7-0.5' 5/12/2020 0 - 0.5 758 17.0 9.58 21.1 752															-	L
EM-6-0.5' 5/12/2020 0 - 0.5 372 3.46 3.91 19.9 264 EM-6-2' 5/12/2020 1.5 - 2 83 - - - - 17.9 EM-7-0.5' 5/12/2020 0 - 0.5 758 17.0 9.58 21.1 752		5/12/2020					2.51		3.21		19.1		115		26.4	
EM-6-2' 5/12/2020 1.5 - 2 83 - - - 17.9 EM-7-0.5' 5/12/2020 0 - 0.5 758 17.0 9.58 21.1 Z52												<u> </u>		<u> </u>	-	
EM-7-0.5' 5/12/2020 0 - 0.5 758 17.0 9.58 21.1 <u>752</u>												1		<u> </u>	28.8	-
												1		1	30.7	1
EM-7-2' 5/12/2020 1.5 - 2 46 - - - 117	EM-7-2'	5/12/2020	1.5 - 2		46		-		-		-		117		-	L
EM-8-1' 5/12/2020 0.5 - 1 549 11.8 8.69 14.7 Z1Z	EM-8-1'	5/12/2020			549		11.8		8.69		14.7				31.1	

Table 1 Metals in Soil Pogonip Farm and Garden

Santa Cruz, California

EM-9-2' 5/ EM-10-0.5' 5/ EM-10-2' 5/ EM-11-0.5' 5/ EM-11-2' 5/ EM-11-2' 5/ EM-13-0.5' 5/ EM-14-0.5' 5/	5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/14/2020 5/15/2020 5/14/2020	0 - 0.5 1.5 - 2 0 - 0.5 1.5 - 2 0 - 0.5 1.5 - 2 0 - 0.5	estricted (Resi	idential) Scre	round Level ¹ eening Level ² eening Level ²	(mg/kg) 6 31 470 5.46		(mg/kg) 11 0.11 0.36 6.71		(mg/kg) 63 3,100 47,000	(mg/kg) 43 80 320	(mg/kg) 140 23,000 350,000
EM-9-2' 5/ EM-10-0.5' 5/ EM-10-2' 5/ EM-11-0.5' 5/ EM-11-2' 5/ EM-11-2' 5/ EM-13-0.5' 5/ EM-14-0.5' 5/	5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/14/2020 5/15/2020 5/14/2020	0 - 0.5 1.5 - 2 0 - 0.5 1.5 - 2 0 - 0.5 1.5 - 2 0 - 0.5		idential) Screenmercial Screen	ening Level ²	31 470 5.46		0.11 0.36		3,100	80	23,000
EM-9-2' 5/ EM-10-0.5' 5/ EM-10-2' 5/ EM-11-0.5' 5/ EM-11-2' 5/ EM-11-2' 5/ EM-13-0.5' 5/ EM-14-0.5' 5/	5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/14/2020 5/15/2020 5/14/2020	0 - 0.5 1.5 - 2 0 - 0.5 1.5 - 2 0 - 0.5 1.5 - 2 0 - 0.5		1,227 168 2,973		470 5.46		0.36				
EM-9-2' 5/ EM-10-0.5' 5/ EM-10-2' 5/ EM-11-0.5' 5/ EM-11-2' 5/ EM-11-2' 5/ EM-13-0.5' 5/ EM-14-0.5' 5/	5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/14/2020 5/15/2020 5/14/2020	1.5 - 2 0 - 0.5 1.5 - 2 0 - 0.5 1.5 - 2 0 - 0.5	Com	1,227 168 2,973 15	eening Level ²	5.46				47,000	320	350 000
EM-9-2' 5/ EM-10-0.5' 5/ EM-10-2' 5/ EM-11-0.5' 5/ EM-11-2' 5/ EM-11-2' 5/ EM-13-0.5' 5/ EM-14-0.5' 5/	5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/14/2020 5/15/2020 5/14/2020	1.5 - 2 0 - 0.5 1.5 - 2 0 - 0.5 1.5 - 2 0 - 0.5		168 2,973 15		-	L I	671				,
EM-10-0.5' 5/ EM-10-2' 5/ EM-11-0.5' 5/ EM-11-0.5' 5/ EM-11-2' 5/ EM-12-0.5' 5/ EM-13-0.5' 5/ EM-14-0.5' 5/	5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/14/2020 5/15/2020 5/14/2020	0 - 0.5 1.5 - 2 0 - 0.5 1.5 - 2 0 - 0.5		2,973 15				0./ 1		10.7	<u>1.140</u>	22.1
EM-10-2' 5/ EM-11-0.5' 5/ EM-11-2' 5/ EM-12-0.5' 5/ EM-13-0.5' 5/ EM-14-0.5' 5/	5/12/2020 5/12/2020 5/12/2020 5/12/2020 5/14/2020 5/15/2020 5/14/2020	1.5 - 2 0 - 0.5 1.5 - 2 0 - 0.5		15							81.9	
EM-11-0.5' 5/ EM-11-2' 5/ EM-12-0.5' 5/ EM-13-0.5' 5/ EM-14-0.5' 5/	5/12/2020 5/12/2020 5/14/2020 5/15/2020 5/14/2020	0 - 0.5 1.5 - 2 0 - 0.5				6.07		8.44		12.6	<u>1,670</u>	29.0
EM-11-2' 5/ EM-12-0.5' 5/ EM-13-0.5' 5/ EM-14-0.5' 5/	5/12/2020 5/14/2020 5/15/2020 5/14/2020	1.5 - 2 0 - 0.5		569						-	34.1	-
EM-12-0.5' 5/ EM-13-0.5' 5/ EM-14-0.5' 5/	5/14/2020 5/15/2020 5/14/2020	0 - 0.5		0.4		3.78		7.16		24.4	856	36.2
EM-13-0.5' 5/ EM-14-0.5' 5/	5/15/2020 5/14/2020			94		- 0.44		-	_	-	140	-
EM-14-0.5' 5/	5/14/2020			31 24		<2.44		3.04 0.554	В	38.6 9.98	9.15 11.2	98.3 25.4
		0 - 0.5				0.815	J		J			_
	- /1 / /2020	0 - 0.5	 	38	Donlinet	1.58	J	2.92	B B	12.5	33.0	44.5
	5/14/2020 5/15/2020	0 - 0.5 0 - 0.5		26	Duplicate	2.14 1.12	J	2.80 1.72	.J	14.0 13.0	32.5 16.1	55.3 33.0
	5/15/2020	0 - 0.5		42		1.00	J	1.33	J	14.0	24.6	37.3
	5/15/2020	0 - 0.5		47		1.50	J	1.13	J	13.8	40.3	35.0
	5/15/2020	0 - 0.5		39		3.29		2.35		11.2	44.5	30.5
	5/14/2020	0 - 0.5		167		3.13		3.57	В	12.7	116	46.0
	5/14/2020	1.5 - 2		64		=		-		-	38.4	
	5/15/2020	0 - 0.5		58		<2.53		2.07	J	20.5	95.2	33.4
	5/15/2020	1.5 - 2		10		=		=		=	9.26	-
	5/14/2020	0 - 0.5		776		10.0		6.12		7.16	<u>768</u>	28.7
EM-21-0.5'-DUP 5/	5/14/2020	0 - 0.5		776	Duplicate	6.85		5.65	В	7.33	<u>769</u>	30.6
EM-21-2' 5/	5/14/2020	1.5 - 2		17		-		-		-	9.52	-
	5/15/2020	0 - 0.5		100		<2.28		2.39		12.3	92.6	22.8
EM-22-2' 5/	5/15/2020	1.5 - 2		17		-		-		-	25.9	-
EM-23-0.5' 5/	5/15/2020	0 - 0.5		29		0.932	J	1.24	J	12.8	10.7	26.0
EM-24-0.5' 5/	5/15/2020	0 - 0.5		33		0.886	J	0.686	J	9.50	9.18	26.8
EM-25-0.5' 5/	5/15/2020	0 - 0.5		30		0.786	J	0.810	J	12.2	10.3	28.7
EM-26-0.5' 5/	5/15/2020	0 - 0.5		19		0.656	J	1.02	J	11.7	10.8	25.1
EM-27-0.5' 5/	5/15/2020	0 - 0.5	1	34	i i	1.02	J	0.823	J	13.6	6.12	26.4
EM-28-0.5' 5/	5/15/2020	0 - 0.5		29	i	0.813	J	0.865	J	14.4	14.3	31.9
EM-29-0.5' 5/	5/15/2020	0 - 0.5	† i	31	i i	0.720	J	1.02	J	10.8	17.8	36.8
	5/15/2020	0 - 0.5		31		<2.25		2.52		21.9	18.0	24.1
	5/15/2020	0 - 0.5	t	33	1	<2.30		2.07	J	9.94	15.4	19.1
	5/15/2020	0 - 0.5	 	18	 	<2.34		2.01	J	13.8	37.4	23.0
	5/15/2020	0 - 0.5		17		<2.25		2.23	J	8.74	12.3	19.0

Soil samples sieved using No. 10 sieve and metals analyzed using USEPA Method 6010B.

Analytes detected above laboratory reporting limit are emboldened.

Analytes detected above background level and Unrestricted (Residential) Screening Level are highlighted.

Analytes detected above background level and Commercial Screening Level are underlined.

bgs = Below ground surface. mg/kg = Milligrams per kilogram.

= Not analyzed.

Je = The same analyte is found in the associated blank.

J = The identification of the analyte is acceptable; the reported value is an estimate.

J6 = The sample matrix interfered with the ability to make any accurate determination; spike value is low.

O1 = The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

1 Lawrence Berkeley National Laboratory (LBNL, 2009), was used to establish acceptable upper estimate background concentrations for metals with the exception of arsenic. For arsenic, the background level represents the established background level for San Francisco Bay Region of 11 mg/kg (Duvergé, 2011).

² In order of priority, the screening level represents the Department of Toxic Substances Control (DTSC)-modified screening level (DTSC, 2020) followed by U.S. Environmental Protection Agency (USEPA) Regional Screening Level (RSL; USEPA, 2020).

DTSC, 2020. Human Health Risk Assessment (HHRA) Note Number 3. June.

Duvergé, 2011. Establishing Background Arsenic in Soil of the Urbanized San Francisco Bay Region. December.

LBNL, 2009. Analysis of Background Distributions of Metals in Soil at Lawrence Berkeley National Laboratory. Revised April.

USEPA, 2020. Regional Screening Level (RSL) Summary Table (TR=1E-6, HQ=1). May.

APPENDIX B

SOIL SCREENING LEVELS FOR HYPOTHETICAL RECREATIONAL TRAIL USER RECEPTOR AND HYPOTHETICAL UNAUTHORIZED CAMPER RECEPTOR

TABLE OF CONTENTS

			PAGE
LIST C	F TABI	LES	ii
LIST C	F APPE	ENDICES	ii
B.1.0	SOIL S	SCREENING LEVELS FOR HYPOTHETICAL RECREATIONAL TRAIL USER	
	RECE	PTOR AND HYPOTHETICAL UNAUTHORIZED CAMPER RECEPTOR	1
	B.1.1	Lead	1
		B.1.1.1 Risk Characterization for Lead	1
		B.1.1.2 Screening Levels for Lead	2
	B.1.2	Polycyclic Aromatic Hydrocarbons (PAHs)	
		B.1.2.1 Risk Characterization for PAHs	
		B.1.2.2 Screening Levels for PAHs	
РЭΛ	CLIMAN	1ARY	o
D.Z.U	SUIVIIV	IAR1	0
B.3.0	RFFFF	RENCES	1

LIST OF TABLES

Table B-1	Statistical Summary of Shallow Soil (0 to 2 feet bgs) Analytical Data – West Meadow
Table B-2	Exposure Intake Assumptions for Hypothetical Recreational Trail User Receptor
Table B-3	Exposure Intake Assumptions for Hypothetical Unauthorized Camper Receptor with an Exposure Frequency of 14 days per year
Table B-4	Exposure Intake Assumptions for Hypothetical Unauthorized Camper Receptor with an Exposure Frequency of 28 days per year
Table B-5	Toxicity Values – Reference Doses/Reference Concentrations
Table B-6	Toxicity Values – Slope Factors/Inhalation Unit Risk Factors
Table B-7	Total Risk Characterization for the Hypothetical Recreational Trail User Receptor, Direct Exposure to COPCs in Soil (0 to 2 feet bgs)
Table B-8	Total Risk Characterization for the Hypothetical Unauthorized Camper Receptor, Direct Exposure to COPCs in Soil (0 to 2 feet bgs) with an Exposure Frequency of 14 days per year
Table B-9	Total Risk Characterization for the Hypothetical Unauthorized Camper Receptor, Direct Exposure to COPCs in Soil (0 to 2 feet bgs) with an Exposure Frequency of 28 days per year

LIST OF APPENDICES

Attachment B1 LeadSpread 8 Worksheets

Attachment B2 Risk Characterization Equations

Attachment B3 ProUCL Output

B.1.0 SOIL SCREENING LEVELS FOR HYPOTHETICAL RECREATIONAL TRAIL USER RECEPTOR AND HYPOTHETICAL UNAUTHORIZED CAMPER RECEPTOR

Based on current and anticipated future land use as a recreational area, the recreational trail user receptor and unauthorized camper receptor were included in the conceptual site model (CSM; Section 3.0 of this Report). The recreational trail user is a long-term receptor that may include visitors using the recreational trails and the unauthorized camper receptor is a long-term receptor camping at the Site. Although camping is prohibited at the Site, at the request of the County, the on-Site unauthorized camper receptor was included in the CSM and risk-based screening levels were developed for this receptor. The following exposure pathways were included in the development of soil screening levels (SLs) for lead and polycyclic aromatic hydrocarbons (PAHs):

- Incidental ingestion of soil;
- Dermal contact with soil; and
- Inhalation of dust in outdoor air.

B.1.1 Lead

Unlike other chemicals, toxicokinetic models are used to predict blood lead concentrations to determine if exposure to lead poses adverse noncarcinogenic effects to receptors and to develop soil screening levels (SLs) for lead.

B.1.1.1 Risk Characterization for Lead

The human health screening evaluation (HHSE) for lead for the hypothetical recreational trail user receptor is discussed in Section 5.0 of this Report.

For the hypothetical unauthorized camper receptor, the exposure pathways are incomplete due to the implementation of engineering controls to mitigate unauthorized camping at the Site. Regardless, as noted in the 2019 *Phase I Environmental Site Assessment* (Phase I; Weber, Hayes & Associates [WHA], 2019) and during Site visits, unauthorized camp sites have been observed within the ravine area. As discussed in Section 5.1 of this Report, the exposure point concentrations (EPCs) for surface and shallow soil samples collected from the ravine area were 884 milligrams per kilogram (mg/kg) and 170 mg/kg, respectively. These lead EPCs for surface soil and shallow soil do not exceed the unauthorized camper soil SLs of 1,800 mg/kg and 1,080 mg/kg for 14-day and 28-day exposure frequencies, respectively. In the event of

unauthorized camping within the ravine area, lead does not pose an adverse noncarcinogenic risk to the hypothetical unauthorized camper receptor.

B.1.1.2 Screening Levels for Lead

Neither the U.S. Environmental Protection Agency (USEPA) nor the California Environmental Protection Agency (CalEPA) publishes toxicity values for lead; therefore, blood-lead models are used to predict blood lead concentrations and develop soil SLs for lead. This section describes the blood-lead model used to develop lead soil SLs for the hypothetical recreational trail user receptor and hypothetical unauthorized camper receptor.

DTSC LeadSpread 8 Model

The DTSC LeadSpread 8 model (DTSC, 2011) calculates several blood lead concentrations, including the median, 90th, 95th, 98th, and 99th percentile estimates for the predicted distribution. Additionally, the model calculates the concentration in exterior soil and interior dust that will result in a 90th percentile estimate of blood lead equal to the target increase in children's blood lead level of concern by 1 microgram per deciliter (µg/dL; CalEPA benchmark incremental change criterion for lead). This target concentration is referred to as "PRG-90". DTSC LeadSpread 8 addresses child exposures only and is recommended by DTSC for evaluating lead exposure under unrestricted land use. In the model, DTSC indicates that non-residential scenarios may involve fewer than seven days per week for exposure frequency. This model was used to develop soil screening levels for lead for the following non-residential receptors:

- Hypothetical Recreational Trail User Receptor This receptor is assumed to visit the Site
 one day per week (52 days per year). Therefore, the exposure frequency in the model is
 reduced from seven days per week (default) to one day per week. Based on this model,
 the soil SL for lead is 540 mg/kg.
- Hypothetical Unauthorized Camper Receptor Since camping is prohibited, the exposure frequency of this receptor is unknown. Based on best professional judgment, two exposure frequencies were considered. For one exposure scenario, this receptor is assumed to camp at the Site for 14 days per year. This is consistent with the Bureau of Land Management (BLM) yearly recreational exposure frequency for a recreational visitor, which includes a range of possible activities including camping (BLM, 2017). For the second exposure scenario, the exposure frequency was doubled to be 28 days per year. Therefore, the exposure frequency in the model is reduced from seven days per week (default) to 0.3 day per week and 0.5 day per week, which is equivalent to 14 days per

year and 28 days per year, respectively. Based on this model, the soil SLs for lead are 1,800 mg/kg and 1,080 mg/kg for 14-day and 28-day exposure frequencies, respectively.

The LeadSpread 8 model worksheets for the receptors described above are provided in Attachment B1.

B.1.2 Polycyclic Aromatic Hydrocarbons (PAHs)

Using data from the exposure and toxicity assessments, human noncancer adverse health effects (hazard index [HI]) and excess cancer risks from potential exposure to PAHs in shallow soil (0 to 2 feet below ground surface [bgs]) were estimated. Then, using the HI and excess cancer risk estimates, soil EPCs, and USEPA and CalEPA target HI and excess cancer risk, risk-based soil SLs were estimated for PAHs.

B.1.2.1 Risk Characterization for PAHs

This section summarizes the approach used to estimate noncancer adverse health effects and excess cancer risks from assumed exposure to PAHs in shallow soil. The risk characterization equations for each potentially complete and significant exposure pathway are presented in Attachment B2. The input parameters for the risk characterization equations are summarized below:

- All detected PAHs were retained as chemicals of potential concern (COPCs, Table B-1);
- Instead of an average exposure scenario (central tendency exposure [CTE]), an upper-bound exposure scenario was evaluated (otherwise referred to as a reasonable maximum exposure [RME]). The RME scenario assumes mostly conservative upper-bound intake assumptions (e.g., 90th or 95th percentile for nearly all intake assumptions) and upper-bound estimates of chemical concentrations;
- Chemical doses were estimated on the basis of a number of intake assumptions, also referred to as exposure factors, including EPCs, exposure frequency, exposure duration, body weight, and other parameters. Consistent with the parameters used for the development of soil SLs for lead, the exposure parameters are as follows:
 - Hypothetical Recreational Trail User Receptor Eight hours a day, one day per week (52 days per year) for a period of 26 years (as both a child [6 years] and an adult [20 years]). Potential exposures for this receptor are expected to occur from time spent outdoors only.

O Hypothetical Unauthorized Camper Receptor – For this receptor, two potential exposure scenarios were evaluated: (1) 24 hours a day for 14 days per year and (2) 24 hours a day for 28 days per year. Both scenarios are for an exposure period of 26 years (as both a child [6 years] and an adult [20 years]). Potential exposures for this receptor are expected to occur from time spent outdoors only.

The intake assumptions for these receptors are summarized in Tables B-2, B-3, and B-4.

- The EPCs are conservative estimates of the chemical concentration in shallow soil. It is unlikely that a potential receptor will spend the entire exposure duration of 26 years residing over maximum detected concentrations in shallow soil. Therefore, it is appropriate to statistically evaluate the shallow soil data on an area-wide basis and consider a 95-percent upper confidence limit of the mean (95UCL) concentration as an appropriate EPC. A USEPA software package, ProUCL Version 5.1, was used to estimate the upper confidence limit of the mean concentration (UCL; [typically the 95UCL, but sometimes the 97.5UCL or 99UCL, depending on the data set]). The ProUCL output spreadsheets are presented in Attachment B3. Consistent with USEPA (1989) procedures, the lesser of the maximum detected concentration and the 95UCL was selected as shallow soil EPCs. The soil EPCs for PAHs are presented on Table B-1.
- Toxicity values are combined with exposure factors to estimate adverse noncancer health effects and excess cancer risks. Toxicity values include oral reference doses (RfDs), inhalation reference concentrations (RfCs), oral slope factors (SFs), and inhalation unit risk factors (IURs). Toxicity values were selected in accordance with Toxicity Criteria for Human Health Risk Assessments, Screening Levels, and Remediation Goals rule (Health and Safety Code [HSC] §25300 et seq., "Chapter 6.8"; Toxicity Criteria Rule) and DTSC (2019) Note Number 10. The toxicity values are presented on Tables B-5 and B-6.

The parameters described above were used in risk characterization equations (Attachment B2) to estimate noncancer HI and excess cancer risks as described in the following sections.

Noncancer Adverse Health Effects - Hazard Quotient and Hazard Index

Noncarcinogenic effects are typically evaluated by comparing an exposure level over a specified time period, with an RfD or RfC based on a similar time period. To estimate noncancer effects, the intake is divided by the RfD or RfC. The resulting value is referred to as a hazard quotient (HQ).

Exposures to multiple chemicals were evaluated by summing the HQs for each chemical for each exposure pathway to estimate the HI, using the following equation:

$$HI_p = \sum_{i=1}^n HQ_{i,p}$$

Where:

HI_p = HI for the receptor's exposure to n chemicals via pathway p (unitless);

n = Number of chemicals (i.e., detected PAHs); and

 $HQ_{i,p} = HQ$ for chemical i for exposure pathway p (unitless).

A HI less than or equal to one indicates that no adverse noncancer health effects are expected to occur (USEPA, 1989). Consistent with methods used by USEPA (2021), the HI presented for the receptors is based on the child receptor, which is higher than the HI for the corresponding adult receptor. This is conservative because it assumes higher daily intake rates, lower body weight, and chronic toxicity values. The summation of HIs across age groups (i.e., child and adult) is inappropriate because noncancer hazard is not cumulative over time, as is assumed for cancer risk (USEPA, 2021).

Excess Cancer Risk

SFs/IURs were used to estimate the potential excess cancer risk associated with exposure to individual COPCs. Consistent with USEPA (1989) risk assessment guidelines, the SF/IUR was multiplied by the chronic daily intake averaged over 70 years to estimate lifetime excess cancer risk. The resulting values are referred to as excess cancer risks. These potential excess cancer risks are compared to CalEPA's risk management range of 1×10^{-6} to 1×10^{-4} . The CalEPA threshold value of one-in-one million (1×10^{-6}) represents the lower end (most stringent) of the CalEPA's risk management range and is the point of departure for risk management decisions for the receptors.

The potential cancer risks from exposure to multiple chemicals were then estimated by summing the excess cancer risks for each chemical for a given exposure pathway using the following equation:

$$CR_p = \sum_{i=1}^{n} CR_{i,p}$$

Where:

CR_p = Excess cancer risk for the receptor's exposure to n chemicals via pathway p (unitless);

n = Number of chemicals (i.e., detected PAHs); and

 $CR_{i,p}$ = Excess cancer risk for chemical i for exposure pathway p (unitless).

Consistent with methods used by USEPA (2021), the excess cancer risk estimates for the receptors are the sum of the excess cancer risk estimates for the child and adult receptors.

The results of this risk characterization process for the hypothetical recreational trail user receptor are presented on Table B-7 and summarized in the following table:

Media	Exposure Pathway	Hazard Index (HI)	Cancer Risk (CR)	Comments
Shallow Soil (0 to 2 feet bgs)	Direct Exposure -Ingestion -Dermal Contact -Inhalation of Dust	0.05	4 x 10 ⁻⁶	HI does not exceed target level of 1. CR exceeds target level of 1 x 10 ⁻⁶ . Individual HIs for all COPCs do not exceed 1 (see Table B-7). Individual CRs for all COPCs do not exceed 1 x 10 ⁻⁶ (see Table B-7).

The HI does not exceed the USEPA and CalEPA target level of one; therefore, PAHs do not pose adverse noncancer effects to the hypothetical recreational trail user receptor. The excess cancer risk is within CalEPA's risk management range of 1 x 10^{-6} to 1 x 10^{-4} . The individual excess cancer risks for PAHs do not exceed 1 x 10^{-6} . Benzo(a)pyrene and dibenz(a,h)anthracene are the primary contributors to the excess cancer risk, each with an estimated cancer risk of 1 x 10^{-6} . They account for 63% of the total excess cancer risk. Individual excess cancer risks for all other PAHs are less than 1 x 10^{-6} .

The results of this risk characterization process for the hypothetical unauthorized camper receptor are presented on Tables B-8 and B-9 and summarized in the following table:

Media	Exposure Pathway	Hazard Index (HI)	Cancer Risk (CR)	Comments
Shallow Soil (0 to 2 feet bgs)	Direct Exposure -Ingestion -Dermal Contact -Inhalation of Dust (Exposure frequency of 14 days per year)	0.01	1 x 10 ⁻⁶	HI does not exceed target level of 1. CR does not exceed target level of 1 x 10 ⁻⁶ . Individual HIs for all COPCs do not exceed 1 (see Table B-8). Individual CRs for all COPCs do not exceed 1 x 10 ⁻⁶ (see Table B-8).
Shallow Soil (0 to 2 feet bgs)	Direct Exposure -Ingestion -Dermal Contact -Inhalation of Dust (Exposure frequency of 28 days per year)	0.02	2 x 10 ⁻⁶	HI does not exceed target level of 1. CR exceeds target level of 1 x 10 ⁻⁶ . Individual HIs for all COPCs do not exceed 1 (see Table B-9). Individual CRs for all COPCs do not exceed 1 x 10 ⁻⁶ (see Table B-9).

The HIs do not exceed the USEPA and CalEPA target level of one; therefore, PAHs do not pose adverse noncancer effects to the hypothetical recreational trail user receptor and hypothetical

unauthorized camper receptor. The excess cancer risk is within CalEPA's risk management range of 1×10^{-6} to 1×10^{-6} . The individual excess cancer risks for PAHs do not exceed 1×10^{-6} .

B.1.2.2 Screening Levels for PAHs

Using the HI and excess cancer risk estimates, source EPCs, and USEPA and CalEPA target HI of one and target excess cancer risk of 1 x 10^{-6} , a soil SL was estimated using the equations in the following sections.

Soil SL - Noncarcinogenic Effects

$$Soil \ SL_{nc} = \frac{HI_T \times EPC_{i,p}}{HI_{i,p}}$$

Where:

Soil SL_{nc}= Soil SL for noncarcinogenic effects for chemical i via pathway p (mg/kg);

 HI_T = Target HI of one (unitless);

EPC_{i,p}= Exposure point concentration for soil for chemical i via pathway p (mg/kg); and

 $HI_{i,p}$ = HI for chemical i via pathway p (unitless).

Soil SL - Carcinogenic Effects

$$Soil SL_c = \frac{CR_T \times EPC_{i,p}}{CR_{i,p}}$$

Where:

Soil SL_{nc}= Soil SL for carcinogenic effects for chemical i via pathway p (mg/kg);

 CR_T = Target excess cancer risk of 1 x 10⁻⁶ (unitless);

EPC_{i,p}= Exposure point concentration for soil for chemical i via pathway p (mg/kg); and

 $CR_{i,p}$ = Excess cancer risk for chemical i via pathway p (unitless).

The recreation trail user soil SLs for PAHs are presented on Table B-7. The unauthorized camper soil SLs for PAHs under the two exposure scenarios (i.e., exposure frequencies of 14 days per year and 28 days per year) are presented on Tables B-8 and B-9.

B.2.0 SUMMARY

Based on current and anticipated future land use in the Lower Main Meadow, Pogonip Open Space as a recreational area, the recreational trail user receptor and the unauthorized camper receptor were included in the CSM, and risk-based screening levels were developed.

Exposures to lead are evaluated separately from other COPCs by using toxicokinetic models to predict blood lead concentrations and soil SLs. The HHSE for lead for the hypothetical recreational trail user receptor is discussed in Section 5.0 of this Report. For the hypothetical unauthorized camper receptor, lead EPCs for surface soil and shallow soil in the ravine area do not exceed the unauthorized camper soil SLs of 1,800 mg/kg and 1,080 mg/kg for 14-day and 28-day exposure frequencies, respectively. In the event of unauthorized camping within the ravine area, lead does not pose an adverse noncarcinogenic risk to the hypothetical unauthorized camper receptor.

Based on the evaluation of potential human health risks to the recreational trail user receptor and the unauthorized camper receptor from exposure to PAHs, the HIs do not exceed the USEPA and CalEPA target level of one and the excess cancer risks are within CalEPA's risk management range of 1 x 10^{-6} to 1 x 10^{-4} . The individual excess cancer risks for PAHs detected in soil do not exceed 1 x 10^{-6} .

Since there are no published soil SLs for recreational receptors, Site-specific risk-based soil SLs were developed for use at the Site. The soil SLs for lead and PAHs detected in shallow soil at the Site are summarized in the following table.

	So	il Screening Levels (mg/	/kg)
COPC	Recreational Trail User Receptor	Unauthorized C	amper Receptor
Primary Exposure	8 hours/day	24 hours/day	24 hours/day
Assumptions	52 days/year	14 days/year,	28 days/year
	26 years (adult/child)	26 years (adult/child)	26 years (adult/child)
Lead	540	1,800	1,080
Anthracene	120,000	430,000	220,000
Acenaphthene	23,000	87,000	43,000
Benz(a)anthracene	45	170	84
Benzo(a)pyrene	4.5	17.0	8.4
Benzo(b)fluoranthene	45	170	84

	So	il Screening Levels (mg/	/kg)
COPC	Recreational Trail User Receptor	Unauthorized C	amper Receptor
Primary Exposure	8 hours/day	24 hours/day	24 hours/day
Assumptions	52 days/year	14 days/year,	28 days/year
	26 years (adult/child)	26 years (adult/child)	26 years (adult/child)
Benzo(g,h,i)perylene	NE	NE	NE
Benzo(k)fluoranthene	450	1,700	840
Chrysene	4,500	17,000	8,400
Dibenz(a,h)anthracene	1.1	4.1	2.1
Fluoranthene	NE	NE	NE
Fluorene	16,000	58,000	29,000
Indeno(1,2,3-			
c,d)pyrene	45	170	84
Phenanthrene	NE	NE	NE
Pyrene	12,000	43,000	22,000
Naphthalene	38	140	70
1-Methylnaphthalene	160	580	290
2-Methylnaphthalene	1,600	5,800	2,900

Notes:

NE = No toxicity values are available; therefore, risk-based screening level was not estimated.

B.3.0 REFERENCES

- Bureau of Land Management (BLM), 2017. BLM Technical Memorandum, Screening Assessment Approaches for Metals in Soil at BLM HazMat/AML Sites. September 2017 Update.
- Department of Toxic Substances Control (DTSC), 2011. User's Guide to LeadSpread 8 and Recommendations for Evaluation of Lead Exposures in Adults. Department of Toxic Substances Control. September.
- DTSC, 2019. Human Health Risk Assessment Note Number 10: Required Toxicity Criteria under sections 69021(a), (b), and (c) of the Toxicity Criteria for Human Health Risk Assessments, Screening Levels, and Remediation Goals Rule and Specification of DTSC-Recommended Toxicity Criteria for Other Analytes Evaluated in Human Health Risk Assessments, Screening-Levels, and Remediation-Goal Calculations. February 25.
- U.S. Environmental Protection Agency (USEPA), 1989. Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Part A. Interim Final. Solid Waste and Emergency Response. December.
- USEPA, 2021. Regional Screening Level (RSL) Summary Table (TR=1E-6, HQ=1). May.
- Weber, Hayes & Associates (WHA), 2019. Phase I Environmental Site Assessment for Recreational Open Space Property. November 19.

Table B-1
Statistical Summary of Shallow Soil (0 to 2 feet bgs) Analytical Data - West Meadow

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

Chemical	Number of Samples	Number of Detections	Frequency of Detection	Arithmetic Mean of Detected (mg/kg)	Standard Deviation of Detected (mg/kg)	Minimum Detected Concentration (mg/kg)	Maximum Detected Concentration (mg/kg)	95UCL ¹ (mg/kg)	Soil EPC ² (mg/kg)
Polynuclear Aromatic Hydrocarbons (PAHs)									
Anthracene	31	12	39%	0.20	0.30	0.00491	0.986	0.21	0.21
Acenaphthene	31	10	32%	0.13	0.20	0.00499	0.651	0.13	0.13
Benz(a)anthracene	31	23	74%	1.4	2.6	0.00212	8.45	3.6	3.6
Benzo(a)pyrene	31	26	84%	1.8	3.7	0.00239	11.7	7.7	7.7
Benzo(b)fluoranthene	31	29	94%	1.9	4.1	0.00244	14.8	9.0	9.0
Benzo(g,h,i)perylene	31	25	81%	1.0	1.9	0.00215	7.52	1.9	1.9
Benzo(k)fluoranthene	31	18	58%	0.85	1.4	0.00264	4.02	1.8	1.8
Chrysene	31	21	68%	1.9	3.2	0.00297	9.86	4.5	4.5
Dibenz(a,h)anthracene	31	15	48%	0.71	1.3	0.00377	4.45	1.0	1.0
Fluoranthene	31	21	68%	1.6	2.9	0.00273	11.1	3.9	3.9
Fluorene	31	9	29%	0.054	0.086	0.00249	0.260	0.053	0.053
Indeno(1,2,3-c,d)pyrene	31	21	68%	1.1	1.9	0.00213	6.25	1.7	1.7
Phenanthrene	31	14	45%	0.68	1.2	0.00295	4.14	0.90	0.90
Pyrene	31	22	71%	1.5	3.0	0.00280	11.8	2.7	2.7
Naphthalene	31	9	29%	0.57	1.5	0.00491	4.68	1.2	1.2
1-Methylnaphthalene	31	5	16%	0.026	0.028	0.0106	0.0762	0.028	0.028
2-Methylnaphthalene	31	5	16%	0.037	0.041	0.0133	0.110	0.038	0.038

Notes:

95UCL = 95 Percent Upper Confidence Limit of the Arithmetic Mean.

EPC = Exposure point concentration.

mg/kg = Milligrams per kilogram.

References:

USEPA. 1989. Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Part A. Interim Final. Solid Waste and Emergency Response. December.

¹ A U.S. Environmental Protection Agency (USEPA) software package, ProUCL Version 5.1, was used to estimate the upper confidence limit of the mean concentration (UCL; [typically the 95UCL, but sometimes the 97.5UCL or 99UCL, depending on the data set]).

² Consistent with USEPA (1989) procedures, when evaluating a reasonable maximum exposure scenario the lesser of the maximum detected concentration and the 95UCL was selected as the appropriate soil EPC for comparison with the screening level.

Table B-2 Exposure Intake Assumptions for Hypothetical Recreational Trail User Receptor¹

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

Parameter	Acronym	Value	Unit	Source
Target Cancer Risk	TR	1.00E-06	Unitless	DTSC, 2019
Target Hazard Index	THI	1	Unitless	DTSC, 2019
Child				
Averaging Time (carcinogens) ²	ATc	25,550	days	DTSC, 2019
Averaging Time (noncarcinogens)	ATn	2,190	days	DTSC, 2019
Exposure Duration	ED	6	years	BPJ ³
Exposure Frequency	EF	52	days/year	BPJ⁴
Exposure Time	ET	8	hours/day	BPJ ⁵
Body Weight	BW	15	kg	DTSC, 2019
Soil Ingestion Rate	IRs	200	mg/day	DTSC, 2019
Skin Surface Area	SA	2,373	cm ²	DTSC, 2019
Soil Adherence Factor	AF	0.2	mg/cm ² -day	DTSC, 2019
Dermal Absorption Factor ⁶	ABS	0.15	unitless	DTSC, 2019
Particulate Emission Factor ⁷	PEF	1.32E+09	m³/kg	DTSC, 2019
Adult				
Averaging Time (carcinogens) ²	ATc	25,550	days	DTSC, 2019
Averaging Time (noncarcinogens)	ATn	7,300	days	DTSC, 2019
Exposure Duration	ED	20	years	BPJ ³
Exposure Frequency	EF	52	day/year	BPJ⁴
Exposure Time	ET	8	hours/day	BPJ ⁵
Body Weight	BW	80	kg	DTSC, 2019
Soil Ingestion Rate	IRs	100	mg/day	DTSC, 2019
Skin Surface Area	SA	6,032	cm ²	DTSC, 2019
Soil Adherence Factor	AF	0.07	mg/cm ² -day	DTSC, 2019
Dermal Absorption Factor ⁶	ABS	0.15	unitless	DTSC, 2019
Particulate Emission Factor ⁷	PEF	1.32E+09	m ³ /kg	DTSC, 2019

Notes:

kg = kilograms. mg/day = milligrams per day. cm² = square centimeters. mg/cm²-day = milligrams per square centimeter per day.

m³/kg = cubic meters per kilogram.

References:

DTSC. 2015. Preliminary Endangerment Assessment Guidance Manual. Department of Toxic Substances Control. October.

DTSC. 2019. Human Health Risk Assessment Note Number 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities. April 9.

¹ Hypothetical recreational trail user receptor includes visitors and trespassers, which are expected to spend entire exposure duration outdoors.

² Based on a 70 year lifetime.

Best professional judgment. Recreational receptor is expected to spend time as both a child and adult recreator receptor over a lifetime

⁴ Best professional judgment. Recreational receptor was assumed to visit one day per week.

⁵ Best professional judgment. Recreational receptor was assumed to visit 8 hours a day.

⁶ In accordance with DTSC (2015), the dermal absorption fraction for polynuclear aromatic hydrocarbons can be assumed to be 0.15.

⁷ In the absence of a PEF for the recreational scenario, the PEF was assumed to be the same value used for residential and industrial scenarios (DTSC, 2019).

Table B-3 Exposure Intake Assumptions for Hypothetical Camper Receptor with an Exposure Frequency of 14 days per year¹

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

Parameter	Acronym	Value	Unit	Source
Target Cancer Risk	TR	1.00E-06	Unitless	DTSC. 2019
Target Hazard Index	THI	1	Unitless	DTSC, 2019
Child				
Averaging Time (carcinogens) ²	ATc	25,550	days	DTSC, 2019
Averaging Time (noncarcinogens)	ATn	2,190	days	DTSC, 2019
Exposure Duration	ED	6	years	BPJ^3
Exposure Frequency	EF	14	days/year	BLM, 2017 ⁴
Exposure Time	ET	24	hours/day	BPJ ⁵
Body Weight	BW	15	kg	DTSC, 2019
Soil Ingestion Rate	IRs	200	mg/day	DTSC, 2019
Skin Surface Area	SA	2,373	cm ²	DTSC, 2019
Soil Adherence Factor	AF	0.2	mg/cm ² -day	DTSC, 2019
Dermal Absorption Factor ⁶	ABS	0.15	unitless	DTSC, 2019
Particulate Emission Factor ⁷	PEF	1.32E+09	m ³ /kg	DTSC, 2019
Adult				
Averaging Time (carcinogens) ²	ATc	25,550	days	DTSC, 2019
Averaging Time (noncarcinogens)	ATn	7,300	days	DTSC, 2019
Exposure Duration	ED	20	years	BPJ ³
Exposure Frequency	EF	14	day/year	BLM, 2017 ⁴
Exposure Time	ET	24	hours/day	BPJ ⁵
Body Weight	BW	80	kg	DTSC, 2019
Soil Ingestion Rate	IRs	100	mg/day	DTSC, 2019
Skin Surface Area	SA	6,032	cm ²	DTSC, 2019
Soil Adherence Factor	AF	0.07	mg/cm ² -day	DTSC, 2019
Dermal Absorption Factor ⁶	ABS	0.15	unitless	DTSC, 2019
Particulate Emission Factor ⁷	PEF	1.32E+09	m ³ /kg	DTSC, 2019

Notes:

kg = kilograms. mg/day = milligrams per day. cm² = square centimeters. mg/cm²-day = milligrams per square centimeter per day.

m³/kg = cubic meters per kilogram.

References:

BLM. 2017. BLM Technical Memorandum, Screening Assessment Approaches for Metals in Soil at BLM HazMat/AML Sites. September 2017 Update.

DTSC. 2015. Preliminary Endangerment Assessment Guidance Manual. Department of Toxic Substances Control. October.

DTSC. 2019. Human Health Risk Assessment Note Number 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities. April 9.

¹ Hypothetical camper receptor are expected to spend entire exposure duration outdoors.

² Based on a 70 year lifetime.

³ Best professional judgment. Recreational receptor is expected to spend time as both a child and adult recreator receptor over a lifetime

⁴ In accordance with the Bureau of Land Management (BLM) yearly recreational exposure frequency for recreational visitor, which includes a range of possible activities, including camping (BLM, 2017).

⁵ Best professional judgment. Recreational receptor was assumed to camp at the site 24 hours a day.

⁶ In accordance with DTSC (2015), the dermal absorption fraction for polynuclear aromatic hydrocarbons can be assumed to be 0.15.

⁷ In the absence of a PEF for the recreational scenario, the PEF was assumed to be the same value used for residential and industrial scenarios (DTSC, 2019).

Table B-4 Exposure Intake Assumptions for Hypothetical Camper Receptor with an Exposure Frequency of 28 days per year¹

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

Parameter	Acronym	Value	Unit	Source
Target Cancer Risk	TR	1.00E-06	Unitless	DTSC, 2019
Target Hazard Index	THI	1	Unitless	DTSC, 2019
Child				
Averaging Time (carcinogens) ²	ATc	25,550	days	DTSC, 2019
Averaging Time (noncarcinogens)	ATn	2,190	days	DTSC, 2019
Exposure Duration	ED	6	years	BPJ ³
Exposure Frequency	EF	28	days/year	BPJ⁴
Exposure Time	ET	24	hours/day	BPJ ⁵
Body Weight	BW	15	kg	DTSC, 2019
Soil Ingestion Rate	IRs	200	mg/day	DTSC, 2019
Skin Surface Area	SA	2,373	cm ²	DTSC, 2019
Soil Adherence Factor	AF	0.2	mg/cm ² -day	DTSC, 2019
Dermal Absorption Factor ⁶	ABS	0.15	unitless	DTSC, 2019
Particulate Emission Factor ⁷	PEF	1.32E+09	m ³ /kg	DTSC, 2019
Adult				
Averaging Time (carcinogens) ²	ATc	25,550	days	DTSC, 2019
Averaging Time (noncarcinogens)	ATn	7,300	days	DTSC, 2019
Exposure Duration	ED	20	years	BPJ ³
Exposure Frequency	EF	28	day/year	BPJ⁴
Exposure Time	ET	24	hours/day	BPJ ⁵
Body Weight	BW	80	kg	DTSC, 2019
Soil Ingestion Rate	IRs	100	mg/day	DTSC, 2019
Skin Surface Area	SA	6,032	cm ²	DTSC, 2019
Soil Adherence Factor	AF	0.07	mg/cm ² -day	DTSC, 2019
Dermal Absorption Factor ⁶	ABS	0.15	unitless	DTSC, 2019
Particulate Emission Factor ⁷	PEF	1.32E+09	m³/kg	DTSC, 2019

Notes:

kg = kilograms. mg/day = milligrams per day. cm² = square centimeters. mg/cm²-day = milligrams per square centimeter per day. m³/kg = cubic meters per kilogram.

¹ Hypothetical camper receptor are expected to spend entire exposure duration outdoors.

References:

BLM. 2017. BLM Technical Memorandum, Screening Assessment Approaches for Metals in Soil at BLM HazMat/AML Sites. September 2017 Update.

DTSC. 2015. Preliminary Endangerment Assessment Guidance Manual. Department of Toxic Substances Control. October.

DTSC. 2019. Human Health Risk Assessment Note Number 1, Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities. April 9.

² Based on a 70 year lifetime.

Best professional judgment. Recreational receptor is expected to spend time as both a child and adult recreator receptor over a lifetime

⁴ Best professional judgment. As an upperbound evaluation, the Bureau of Land Management (BLM) yearly recreational exposure frequency for recreational visitor of 14 days per year (BLM, 2017) was doubled to 24 days per year.

⁵ Best professional judgment. Recreational receptor was assumed to camp at the site 24 hours a day.

⁶ In accordance with DTSC (2015), the dermal absorption fraction for polynuclear aromatic hydrocarbons can be assumed to be 0.15.

⁷ In the absence of a PEF for the recreational scenario, the PEF was assumed to be the same value used for residential and industrial scenarios (DTSC, 2019).

Table B-5 Toxicity Values - Reference Doses/Reference Concentrations¹

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

	Or	al Reference Dose (R	fD) ²	GI	ABS	Inhalation Reference Concentration (RfC)			
Chemical	Value (mg/kg-day)	Target Organ(s)/ System(s)	Source	Value (unitless)	Source	Value (μg/m³)	Target Organ(s)/ System(s)	Source	
Polycyclic Aromatic Hydrocarbons									
Anthracene	3.0E-01	None	USEPA, 2021	1	USEPA, 2004	1.2E+03	RTR	USEPA, 2021	
Acenaphthene	6.0E-02	Liver	USEPA, 2021	1	USEPA, 2004	2.4E+02	RTR	USEPA, 2021	
Benz(a)anthracene				1	USEPA, 2004				
Benzo(a)pyrene	3.0E-04	Developmental	USEPA, 2021	1	USEPA, 2004	2.0E-03	Developmental	USEPA, 2021	
Benzo(b)fluoranthene				1	USEPA, 2004				
Benzo(g,h,i)perylene				1	USEPA, 2004				
Benzo(k)fluoranthene				1	USEPA, 2004				
Chrysene				1	USEPA, 2004				
Dibenz(a,h)anthracene				1	USEPA, 2004				
Fluoranthene	4.0E-02	Liver, Blood	USEPA, 2021	1	USEPA, 2004				
Fluorene	4.0E-02	Blood	USEPA, 2021	1	USEPA, 2004	1.6E+02	RTR	USEPA, 2021	
Indeno(1,2,3-c,d)pyrene				1	USEPA, 2004				
Phenanthrene				1	USEPA, 2004				
Pyrene	3.0E-02	Kidney	USEPA, 2021	1	USEPA, 2004	1.2E+02	RTR	USEPA, 2021	
Naphthalene	2.0E-02	Other (body weight)	USEPA, 2021	1	USEPA, 2004	3.0E+00	Nervous, Respiratory	USEPA, 2021	
1-Methylnaphthalene	7.0E-02	Respiratory	ATSDR, 2021	1	USEPA, 2004	2.8E+02	RTR	ATSDR, 2021	
2-Methylnaphthalene	4.0E-03	Respiratory	USEPA, 2021	1	USEPA, 2004	1.6E+01	RTR	USEPA, 2021	

Notes:

GIABS = Gastrointestinal absorption factor.

RTR = route to route extrapolation.

mg/kg-day = milligrams per kilogram body weight per day.

--= not available.

 μ g/m³ = micrograms per cubic meter.

References:

ATSDR. 2021. Minimal Risk Levels (MRLs). August.

DTSC. 2019. Human Health Risk Assessment Note Number 10: Required Toxicity Criteria under sections 69021(a), (b), and (c) of the Toxicity Criteria for Human Health Risk Assessments, Screening Levels, and Remediation Goals Rule and Specification of DTSC-Recommended Toxicity Criteria for Other Analytes Evaluated in Human Health Risk Assessments, Screening-Levels, and Remediation-Goal Calculations. February 25.

USEPA. 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Final. Office of Superfund Remediation and Technology Innovation. July.

USEPA. 2021. Integrated Risk Information System (IRIS). On-line computer database. Last accessed September.

¹ Toxicity values were selected in accordance with Toxicity Criteria for Human Health Risk Assessments, Screening Levels, and Remediation Goals rule and DTSC (2019) Note Number 10.

² In the absence of dermal toxicity values the oral reference doses were multiplied by the gastrointestinal absorption (GIABS) factor and used to evaluate dermal exposure.

Table B-6 Toxicity Values - Slope Factors/Inhalation Unit Risk Factors¹

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

Chemical	Oral Slope	Factor (SF) ²	GIA	ABS	Inhalation Unit	Risk Factor (IUR)
	Value (mg/kg-day) ⁻¹	Source	Value (unitless)	Source	Value (μg/m³) ⁻¹	Source
Polycyclic Aromatic Hydrocarbons						
Anthracene			1	USEPA, 2004		
Acenaphthene			1	USEPA, 2004		
Benz(a)anthracene	1.0E-01	USEPA, 2021a	1	USEPA, 2004	1.1E-04	OEHHA, 2021
Benzo(a)pyrene	1.0E+00	USEPA, 2021c	1	USEPA, 2004	1.1E-03	OEHHA, 2021
Benzo(b)fluoranthene	1.0E-01	USEPA, 2021a	1	USEPA, 2004	1.1E-04	OEHHA, 2021
Benzo(g,h,i)perylene			1	USEPA, 2004		
Benzo(k)fluoranthene	1.0E-02	USEPA, 2021a	1	USEPA, 2004	1.1E-04	OEHHA, 2021
Chrysene	1.0E-03	USEPA, 2021a	1	USEPA, 2004	1.1E-05	OEHHA, 2021
Dibenz(a,h)anthracene	4.1E+00	OEHHA, 2021	1	USEPA, 2004	1.2E-03	OEHHA, 2021
Fluoranthene			1	USEPA, 2004		
Fluorene			1	USEPA, 2004		
Indeno(1,2,3-c,d)pyrene	1.0E-01	USEPA, 2021a	1	USEPA, 2004	1.1E-04	OEHHA, 2021
Phenanthrene			1	USEPA, 2004		
Pyrene			1	USEPA, 2004		
Naphthalene	1.2E-01	OEHHA, 2021	1	USEPA, 2004	3.4E-05	OEHHA, 2021
1-Methylnaphthalene	2.9E-02	USEPA, 2021b	1	USEPA, 2004	7.3E-06	(RTR) USEPA, 2021b
2-Methylnaphthalene			1	USEPA, 2004		

Notes:

GIABS = Gastrointestinal absorption factor.

 $\mu g/m^3$ = micrograms per cubic meter.

mg/kg-day = milligrams per kilogram body weight per day.

--= not available.

References:

DTSC. 2019. Human Health Risk Assessment Note Number 10: Required Toxicity Criteria under sections 69021(a), (b), and (c) of the Toxicity Criteria for Human Health Risk Assessments, Screening Levels, and Remediation Goals Rule and Specification of DTSC-Recommended Toxicity Criteria for Other Analytes Evaluated in Human Health Risk Assessments, Screening-Levels, and Remediation-Goal Calculations. February 25.

OEHHA. 2021. Toxicity Criteria Database. On-line computer database. Last accessed September.

USEPA. 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Final. Office of Superfund Remediation and Technology Innovation. July.

USEPA. 2021a. Regional Screening Level (RSL) Summary Table (TR=1E-6, HQ=1). May

USEPA. 2021b. Provisional Peer-Reviewed Toxicity Values (PPRTV). On-line computer database. Last accessed September.

USEPA. 2021c. Integrated Risk Information System (IRIS). On-line computer database. Last accessed September.

¹ Toxicity values were selected in accordance with *Toxicity Criteria for Human Health Risk Assessments, Screening Levels, and Remediation Goals* rule and DTSC (2019) Note Number 10.

² In the absence of dermal toxicity values the oral slope factors were divided by the gastrointestinal absorption (GIABS) factor and used to evaluate dermal exposure.

Table B-7

Total Risk Characterization for the Hypothetical Recreational Trail User Receptor Direct Exposure to COPCs in Soil (0 to 2 feet bgs)

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

Chemical of Potential Concern Child Resident Receptor Polycyclic Aromatic Hydrocarbons Anthracene Acenaphthene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	Exposure Point Concentration (C _{soil}) (mg/kg) 2.04E-01 1.24E-01 3.51E+00 5.28E+00 8.74E+00 2.73E+00 1.72E+00 4.33E+00 1.37E+00	Chronic Oral Reference Dose (cRfDo) (mg/kg-day) 3.00E-01 6.00E-02 3.00E-04	Carcinogenic Ef Chronic Inhalation Reference Concentration (cRfCi) (µg/m³) 1.20E+03 2.40E+02 2.00E-03	Hazard Quotient (HQ) (unitless) 2 E-06 5 E-06	Oral Slope Factor (SFo) (mg/kg-day) ⁻¹	rcinogenic Effection Inhalation Unit Risk Factor (URF) (μg/m³) ⁻¹	Excess Cancer Risk (unitless)	Noncarcinogenic Effects ¹ (mg/kg)	Carcinogenic Effects ² (mg/kg)	Soil SL ¹ (mg/kg)
Anthracene Acenaphthene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	2.04E-01 1.24E-01 3.51E+00 5.28E+00 8.74E+00 2.73E+00 1.72E+00 4.33E+00	3.00E-01 6.00E-02 3.00E-04 	1.20E+03 2.40E+02 2.00E-03	2 E-06 5 E-06		,,	(unitiess)	(mg/kg)	(mg/kg)	(mg/kg)
Anthracene Acenaphthene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	1.24E-01 3.51E+00 5.28E+00 8.74E+00 2.73E+00 1.72E+00 4.33E+00	6.00E-02 3.00E-04 	2.40E+02 2.00E-03	5 E-06						
Anthracene Acenaphthene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	1.24E-01 3.51E+00 5.28E+00 8.74E+00 2.73E+00 1.72E+00 4.33E+00	6.00E-02 3.00E-04 	2.40E+02 2.00E-03	5 E-06					l	
Anthracene Acenaphthene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	1.24E-01 3.51E+00 5.28E+00 8.74E+00 2.73E+00 1.72E+00 4.33E+00	6.00E-02 3.00E-04 	2.40E+02 2.00E-03	5 E-06						
Acenaphthene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	1.24E-01 3.51E+00 5.28E+00 8.74E+00 2.73E+00 1.72E+00 4.33E+00	6.00E-02 3.00E-04 	2.40E+02 2.00E-03	5 E-06				1.2E+05		1.2E+05
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	3.51E+00 5.28E+00 8.74E+00 2.73E+00 1.72E+00 4.33E+00	3.00E-04 	2.00E-03					2.3E+04		2.3E+04
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	5.28E+00 8.74E+00 2.73E+00 1.72E+00 4.33E+00	3.00E-04 	2.00E-03		1.00E-01	1.10E-04	8 E-08	2.52+04	4.5E+01	4.5E+01
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	8.74E+00 2.73E+00 1.72E+00 4.33E+00			5 E-02	1.00E+00	1.10E-04 1.10E-03	1 E-06	1.2E+02	4.5E+00	4.5E+00
Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	2.73E+00 1.72E+00 4.33E+00			5 E-02				1.26+02		
Benzo(k)fluoranthene Chrysene	1.72E+00 4.33E+00				1.00E-01	1.10E-04	2 E-07		4.5E+01	4.5E+01
Chrysene	4.33E+00						 4 F 00		4.55.00	
•					1.00E-02	1.10E-04	4 E-09		4.5E+02	4.5E+02
L)ihenz(a h)anthracene	1.37E+00				1.00E-03	1.10E-05	1 E-09		4.5E+03	4.5E+03
, · · ·	0 0 1 = 0 0				4.10E+00	1.20E-03	1 E-06		1.1E+00	1.1E+00
Fluoranthene	3.81E+00	4.00E-02		2 E-04						
Fluorene	5.09E-02	4.00E-02	1.60E+02	3 E-06				1.6E+04		1.6E+04
Indeno(1,2,3-c,d)pyrene	2.50E+00				1.00E-01	1.10E-04	6 E-08		4.5E+01	4.5E+01
Phenanthrene	8.72E-01									
Pyrene	3.95E+00	3.00E-02	1.20E+02	3 E-04				1.2E+04		1.2E+04
Naphthalene	1.12E+00	2.00E-02	3.00E+00	1 E-04	1.20E-01	3.40E-05	3 E-08	7.8E+03	3.8E+01	3.8E+01
1-Methylnaphthalene	2.77E-02	7.00E-02	2.80E+02	1 E-06	2.90E-02	7.25E-06	2 E-10	2.7E+04	1.6E+02	1.6E+02
2-Methylnaphthalene	3.72E-02	4.00E-03	1.60E+01	2 E-05				1.6E+03		1.6E+03
Adult Resident Receptor										
Polycyclic Aromatic Hydrocarbons										
Anthracene	2.04E-01	3.00E-01	1.20E+03	2 E-07				1.0E+06		1.0E+06
Acenaphthene	1.24E-01	6.00E-02	2.40E+02	6 E-07				2.1E+05		2.1E+05
Benz(a)anthracene	3.51E+00	0.00L 0Z	2.402.02		1.00E-01	1.10E-04	3 E-08	2.12.00	1.2E+02	1.2E+02
Benzo(a)pyrene	5.28E+00	3.00E-04	2.00E-03	5 E-03	1.00E+00	1.10E-04 1.10E-03	4 E-07	1.0E+03	1.2E+01	1.2E+02
Benzo(b)fluoranthene	8.74E+00	3.00E-04 	2.00E-03	5 =-03	1.00E+00 1.00E-01	1.10E-03 1.10E-04	7 E-08	1.02+03	1.2E+01 1.2E+02	1.2E+01
Benzo(g,h,i)perylene	2.73E+00				1.00E-01	1.10E-04	7 = -00		1.26+02	1.26+02
Benzo(k)fluoranthene	1.72E+00				1.00E-02	1.10E-04	1 E-09		1.2E+03	1.2E+03
Chrysene	4.33E+00				1.00E-02 1.00E-03	1.10E-04 1.10E-05	4 E-10		1.2E+03 1.2E+04	1.2E+03 1.2E+04
,	4.33E+00 1.37E+00				4.10E-03	1.10E-05 1.20E-03	4 E-10 5 E-07		1.2E+04 2.9E+00	1.2E+04 2.9E+00
Dibenz(a,h)anthracene Fluoranthene	3.81E+00	4.00E-02		3 E-05	4.10E+00					
								 1 45.05		1 45 105
Fluorene	5.09E-02	4.00E-02	1.60E+02	4 E-07				1.4E+05	4.05.00	1.4E+05
Indeno(1,2,3-c,d)pyrene	2.50E+00				1.00E-01	1.10E-04	2 E-08		1.2E+02	1.2E+02
Phenanthrene	8.72E-01		4.005.00	4 5 05				4.05.05		4.05.05
Pyrene	3.95E+00	3.00E-02	1.20E+02	4 E-05				1.0E+05		1.0E+05
Naphthalene	1.12E+00	2.00E-02	3.00E+00	2 E-05	1.20E-01	3.40E-05	1 E-08	6.9E+04	1.0E+02	1.0E+02
1-Methylnaphthalene	2.77E-02	7.00E-02	2.80E+02	1 E-07	2.90E-02	7.25E-06	7 E-11	2.4E+05	4.1E+02	4.1E+02
2-Methylnaphthalene	3.72E-02	4.00E-03	1.60E+01	3 E-06				1.4E+04		1.4E+04
		Tatal	Hazard Index =	5 E-02	Total Ever-	Cancer Risk =	4 E-06		<u>, </u>	

Notes:

mg/kg = milligrams per kilogram.

mg/kg-day = milligrams per kilogram body weight per day.

μg/m³ = micrograms per cubic meter.

--= not available or not applicable. No toxicity values are available; therefore, value was not estimated

2 E-06

6.32 E-01

¹ Soil SL represents the lower of the SLs based on noncarcinogenic and carcinogenic effects.

² Consistent with methods used by USEPA, the HI presented for the hypothetical recreational trail user receptor is based on the child receptor.

¹ Consistent with methods used by USEPA, the excess cancer risk estimates for the hypothetical recreational trail user receptor are the sum of the excess cancer risk estimates for the child and adult receptors.

Table B-8

Total Risk Characterization for the Hypothetical Camper Receptor Direct Exposure to COPCs in Soil (0 to 2 feet bgs) with an Exposure Frequency of 14 days per year

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

	Noncarcinogenic Effects			fects	Ca	rcinogenic Effe	cts	Risk-Based Soil Screening Level (SL)		
Chemical of Potential Concern	Exposure Point Concentration (C _{soil}) (mg/kg)	Chronic Oral Reference Dose (cRfDo) (mg/kg-day)	Chronic Inhalation Reference Concentration (cRfCi) (µg/m³)	Hazard Quotient (HQ) (unitless)	Oral Slope Factor (SFo) (mg/kg-day) ⁻¹	Inhalation Unit Risk Factor (URF) (µg/m ³) ⁻¹	Excess Cancer Risk (unitless)	Noncarcinogenic Effects ¹ (mg/kg)	Carcinogenic Effects ² (mg/kg)	Soil SL ¹
	(Hig/kg)	(mg/kg day)	(F9/)	(unitiess)	(mg/ng ddy)	(μ9/)	(dilitiess)	(mg/kg)	(mg/kg)	(mg/kg)
Child Resident Receptor Polycyclic Aromatic Hydrocarbons Anthracene	2.04E-01	3.00E-01	1.20E+03	5 E-07				4.3E+05		4.3E+05
Acenaphthene	1.24E-01	6.00E-01	2.40E+02	1 E-06				4.3E+05 8.7E+04	 	4.3E+05 8.7E+04
Benz(a)anthracene	3.51E+00				1.00E-01	1.10E-04	2 E-08		1.7E+02	1.7E+02
Benzo(a)pyrene	5.28E+00	3.00E-04	2.00E-03	1 E-02	1.00E+00	1.10E-03	3 E-07	4.3E+02	1.7E+01	1.7E+01
Benzo(b)fluoranthene	8.74E+00				1.00E-01	1.10E-04	5 E-08		1.7E+02	1.7E+02
Benzo(g,h,i)perylene	2.73E+00									
Benzo(k)fluoranthene	1.72E+00				1.00E-02	1.10E-04	1 E-09		1.7E+03	1.7E+03
Chrysene	4.33E+00 1.37E+00				1.00E-03 4.10E+00	1.10E-05	3 E-10		1.7E+04 4.1E+00	1.7E+04 4.1E+00
Dibenz(a,h)anthracene Fluoranthene	3.81E+00	4.00E-02		 7 E-05	4.10E+00	1.20E-03	3 E-07		4.1E+00	4.1E+00
Fluorene	5.09E-02	4.00E-02 4.00E-02	1.60E+02	9 E-07				5.8E+04		5.8E+04
Indeno(1,2,3-c,d)pyrene	2.50E+00	4.00L-02	1.00L+02	9 L-07	1.00E-01	1.10E-04	1 E-08	J.0L+04 	1.7E+02	1.7E+02
Phenanthrene	8.72E-01				1.002 01	1.102 04			1.72.02	1.7 2 - 02
Pyrene	3.95E+00	3.00E-02	1.20E+02	9 E-05				4.3E+04		4.3E+04
Naphthalene	1.12E+00	2.00E-02	3.00E+00	4 E-05	1.20E-01	3.40E-05	8 E-09	2.9E+04	1.4E+02	1.4E+02
1-Methylnaphthalene	2.77E-02	7.00E-02	2.80E+02	3 E-07	2.90E-02	7.25E-06	5 E-11	1.0E+05	5.8E+02	5.8E+02
2-Methylnaphthalene	3.72E-02	4.00E-03	1.60E+01	6 E-06				5.8E+03		5.8E+03
Adult Resident Receptor										
Polycyclic Aromatic Hydrocarbons										
Anthracene	2.04E-01	3.00E-01	1.20E+03	5 E-08				3.8E+06		3.8E+06
Acenaphthene	1.24E-01	6.00E-02	2.40E+02	2 E-07				7.7E+05		7.7E+05
Benz(a)anthracene	3.51E+00				1.00E-01	1.10E-04	8 E-09		4.5E+02	4.5E+02
Benzo(a)pyrene	5.28E+00	3.00E-04	2.00E-03	1 E-03	1.00E+00	1.10E-03	1 E-07	3.6E+03	4.5E+01	4.5E+01
Benzo(b)fluoranthene	8.74E+00				1.00E-01	1.10E-04	2 E-08		4.5E+02	4.5E+02
Benzo(g,h,i)perylene	2.73E+00									
Benzo(k)fluoranthene	1.72E+00				1.00E-02	1.10E-04	4 E-10		4.5E+03	4.5E+03
Chrysene	4.33E+00				1.00E-03	1.10E-05	1 E-10		4.5E+04	4.5E+04
Dibenz(a,h)anthracene	1.37E+00				4.10E+00	1.20E-03	1 E-07		1.1E+01	1.1E+01
Fluoranthene	3.81E+00	4.00E-02	4.005.00	7 E-06						
Fluorene	5.09E-02 2.50E+00	4.00E-02	1.60E+02	1 E-07	 1.00E-01	 1.10E-04	 6 E-09	5.1E+05 	 4.5E+02	5.1E+05 4.5E+02
Indeno(1,2,3-c,d)pyrene Phenanthrene	8.72E-01				1.00E-01	1.10E-04 	6 E-09		4.5E+U2 	4.5E+02
Prienantinene	3.95E+00	3.00E-02	1.20E+02	1 E-05				3.8E+05		3.8E+05
Naphthalene	1.12E+00	2.00E-02	3.00E+00	4 E-06	1.20E-01	3.40E-05	3 E-09	2.5E+05	3.7E+02	3.7E+02
1-Methylnaphthalene	2.77E-02	7.00E-02	2.80E+02	3 E-08	2.90E-02	7.25E-06	2 E-11	8.9E+05	1.5E+03	1.5E+03
2-Methylnaphthalene	3.72E-02	4.00E-03	1.60E+01	7 E-07				5.1E+04		5.1E+04
	<u> </u>	T. 4.1	 Hazard Index =	1 E-02	T. (1) F	Cancer Risk =	1 E-06			

Notes:

mg/kg = milligrams per kilogram.

mg/kg-day = milligrams per kilogram body weight per day.

 μ g/m³ = micrograms per cubic meter.

--- = not available or not applicable. No toxicity values are available; therefore, value was not estimated

6 E-07

6.32 E-01

¹ Soil SL represents the lower of the SLs based on noncarcinogenic and carcinogenic effects.

² Consistent with methods used by USEPA, the HI presented for the hypothetical recreational trail user receptor is based on the child receptor.

¹ Consistent with methods used by USEPA, the excess cancer risk estimates for the hypothetical recreational trail user receptor are the sum of the excess cancer risk estimates for the child and adult receptors.

Table B-9

Total Risk Characterization for the Hypothetical Camper Receptor Direct Exposure to COPCs in Soil (0 to 2 feet bgs) with an Exposure Frequency of 28 days per year

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

		Non	carcinogenic Ef	fects	Ca	rcinogenic Effe	cts	Risk-Bas	ed Soil Screening L	evel (SL)
Chemical of Potential Concern	Exposure Point Concentration (C _{soil}) (mg/kg)	Chronic Oral Reference Dose (cRfDo)	Chronic Inhalation Reference Concentration (cRfCi) (µg/m³)	Hazard Quotient (HQ) (unitless)	Oral Slope Factor (SFo) (mg/kg-day) ⁻¹	Inhalation Unit Risk Factor (URF)	Excess Cancer Risk (unitless)	Noncarcinogenic Effects ¹ (mg/kg)	Carcinogenic Effects ² (mg/kg)	Soil SL ¹
	(mg/kg)	(mg/kg-day)	(μg/III)	(unitiess)	(Hg/kg-day)	(μg/π)	(unitiess)	(mg/kg)	(mg/kg)	(mg/kg)
Child Resident Receptor Polycyclic Aromatic Hydrocarbons Anthracene	2.04E-01	3.00E-01	1.20E+03	9 E-07				2.2E+05		2.2E+05
Acenaphthene	1.24E-01	6.00E-01	2.40E+02	3 E-06				4.3E+04		4.3E+04
Benz(a)anthracene	3.51E+00	0.00L-02	2.40L+02	3 L-00	1.00E-01	1.10E-04	4 E-08	4.3L+04 	8.4E+01	8.4E+01
Benzo(a)pyrene	5.28E+00	3.00E-04	2.00E-03	2 E-02	1.00E+00	1.10E-04 1.10E-03	6 E-07	2.1E+02	8.4E+00	8.4E+00
	8.74E+00	3.00⊑-04	2.00E-03	2 E-02			1 E-07	2.16+02		
Benzo(b)fluoranthene Benzo(g,h,i)perylene	8.74E+00 2.73E+00				1.00E-01	1.10E-04	1 E-07		8.4E+01	8.4E+01
Benzo(k)fluoranthene	1.72E+00				1.00E-02	1.10E-04	2 E-09		8.4E+02	8.4E+02
Chrysene	4.33E+00				1.00E-02 1.00E-03	1.10E-04 1.10E-05	2 E-09 5 E-10		8.4E+02 8.4E+03	8.4E+02 8.4E+03
Dibenz(a,h)anthracene	1.37E+00				4.10E+00	1.10E-03 1.20E-03	7 E-07		2.1E+00	2.1E+00
Fluoranthene	3.81E+00	4.00E-02		1 E-04	4.10L+00	1.20L-03			2.12+00	2.12+00
Fluorene	5.09E-02	4.00E-02 4.00E-02	1.60E+02	2 E-06				2.9E+04		2.9E+04
Indeno(1,2,3-c,d)pyrene	2.50E+00	4.00L 0Z	1.002.02	2 2 00	1.00E-01	1.10E-04	3 E-08	2.52.04	8.4E+01	8.4E+01
Phenanthrene	8.72E-01				1.002 01	1.102 04	0 2 00		0.42.01	
Pyrene	3.95E+00	3.00E-02	1.20E+02	2 E-04				2.2E+04		2.2E+04
Naphthalene	1.12E+00	2.00E-02	3.00E+00	8 E-05	1.20E-01	3.40E-05	2 E-08	1.4E+04	7.0E+01	7.0E+01
1-Methylnaphthalene	2.77E-02	7.00E-02	2.80E+02	5 E-07	2.90E-02	7.25E-06	1 E-10	5.0E+04	2.9E+02	2.9E+02
2-Methylnaphthalene	3.72E-02	4.00E-03	1.60E+01	1 E-05		7.202 00		2.9E+03		2.9E+03
Adult Resident Receptor										
Polycyclic Aromatic Hydrocarbons	2.04E-01	3.00E-01	1.20E+03	1 E-07				1.9E+06		1.9E+06
Anthracene	1.24E-01	6.00E-01		3 E-07						3.8E+05
Acenaphthene	3.51E+00	6.00E-02	2.40E+02	3 E-07	1.00E-01	1.10E-04	2 E-08	3.8E+05	2.2E+02	3.6E+05 2.2E+02
Benz(a)anthracene Benzo(a)pyrene	5.28E+00	3.00E-04	2.00E-03	3 E-03	1.00E+00	1.10E-04 1.10E-03	2 E-08 2 E-07	1.8E+03	2.2E+02 2.2E+01	2.2E+02 2.2E+01
Benzo(b)fluoranthene	8.74E+00	3.00⊑-04	2.00E-03	3 E-03	1.00E+00 1.00E-01	1.10E-03 1.10E-04	4 E-08	1.02+03	2.2E+01 2.2E+02	2.2E+01 2.2E+02
Benzo(g,h,i)perylene	2.73E+00				1.002-01	1.102-04	4 L-00		2.2L+02 	2.2L+02
Benzo(k)fluoranthene	1.72E+00				1.00E-02	1.10E-04	8 E-10		2.2E+03	2.2E+03
Chrysene	4.33E+00				1.00E-03	1.10E-05	2 E-10		2.2E+04	2.2E+04
Dibenz(a,h)anthracene	1.37E+00				4.10E+00	1.20E-03	3 E-07		5.5E+00	5.5E+00
Fluoranthene	3.81E+00	4.00E-02		1 E-05						
Fluorene	5.09E-02	4.00E-02	1.60E+02	2 E-07				2.6E+05		2.6E+05
Indeno(1,2,3-c,d)pyrene	2.50E+00				1.00E-01	1.10E-04	1 E-08		2.2E+02	2.2E+02
Phenanthrene	8.72E-01									
Pyrene	3.95E+00	3.00E-02	1.20E+02	2 E-05				1.9E+05		1.9E+05
Naphthalene	1.12E+00	2.00E-02	3.00E+00	9 E-06	1.20E-01	3.40E-05	6 E-09	1.3E+05	1.9E+02	1.9E+02
1-Methylnaphthalene	2.77E-02	7.00E-02	2.80E+02	6 E-08	2.90E-02	7.25E-06	4 E-11	4.5E+05	7.7E+02	7.7E+02
2-Methylnaphthalene	3.72E-02	4.00E-03	1.60E+01	1 E-06				2.6E+04		2.6E+04
		Total	 Hazard Index =	2 E-02	Total Excess	Cancer Risk =	2 E-06			

Notes:

mg/kg = milligrams per kilogram.

mg/kg-day = milligrams per kilogram body weight per day.

 μ g/m³ = micrograms per cubic meter.

--- = not available or not applicable. No toxicity values are available; therefore, value was not estimated

1 E-06

6.32 E-01

¹ Soil SL represents the lower of the SLs based on noncarcinogenic and carcinogenic effects.

² Consistent with methods used by USEPA, the HI presented for the hypothetical recreational trail user receptor is based on the child receptor.

¹ Consistent with methods used by USEPA, the excess cancer risk estimates for the hypothetical recreational trail user receptor are the sum of the excess cancer risk estimates for the child and adult receptors.

ATTACHMENT B1 LEADSPREAD 8 WORKSHEETS

LeadSpread 8 for the Hypothetical Recreational Trail User Receptor

LEAD RISK ASSESSMENT SPREADSHEET 8 CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL

Click here for ABBREVIATED INSTRUCTIONS FOR LEADSPREAD 8

INPUT	
MEDIUM	LEVEL
Lead in Soil/Dust (ug/g)	540
Respirable Dust (ug/m³)	1.5

OUTPUT						
Percentile Estimate of Blood Pb (ug/dl) PRG-90						
	50th	90th	95th	98th	99th	(ug/g)
BLOOD Pb, CHILD	0.5	1.0	1.2	1.4	1.6	540
BLOOD Pb, PICA CHILD	1.1	2.0	2.4	2.9	3.3	271

EXPOSURE PARAMETERS					
	units	children			
Days per week	days/wk	1			
Geometric Standard Deviation		1.6			
Blood lead level of concern (ug/dl)		1			
Skin area, residential	cm ²	2900			
Soil adherence	ug/cm ²	200			
Dermal uptake constant	(ug/dl)/(ug/day)	0.0001			
Soil ingestion	mg/day	100			
Soil ingestion, pica	mg/day	200			
Ingestion constant	(ug/dl)/(ug/day)	0.16			
Bioavailability	unitless	0.44			
Breathing rate	m³/day	6.8			
Inhalation constant	(ug/dl)/(ug/day)	0.192			

PATHWAYS							
CHILDREN	typical with pica						
	Pathwa	ay cont	ribution	Pathwa	ay cont	ribution	
Pathway	PEF	ug/dl	percent	PEF	ug/dl	percent	
Soil Contact	8.3E-6	0.00	1%		0.00	0%	
Soil Ingestion	1.0E-3	0.54	99%	2.0E-3	1.09	100%	
Inhalation	2.8E-7	0.00	0%		0.00	0%	

Click here for REFERENCES

Hypothetical Camper Receptor

$$Days \ perweek = \frac{EF (days/year)}{52 \ (weeks/year)}$$

EF = Exposure Frequency = 52 days per year (BLM, 2017)
Recreational trail user receptor was assumed to visit one day per week.

LeadSpread 8 for the Hypothetical Unauthorized Camper Receptor with an Exposure Frequency of 14 days per year

LEAD RISK ASSESSMENT SPREADSHEET 8
CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL

Click here for ABBREVIATED INSTRUCTIONS FOR LEADSPREAD 8

INPUT	
MEDIUM	LEVEL
Lead in Soil/Dust (ug/g)	1800
Respirable Dust (ug/m³)	1.5

OUTPUT						
Percentile Estimate of Blood Pb (ug/dl) PRG-9						PRG-90
	50th	90th	95th	98th	99th	(ug/g)
BLOOD Pb, CHILD	0.5	1.0	1.2	1.4	1.6	1799
BLOOD Pb, PICA CHILD	1.1	2.0	2.4	2.9	3.3	903

EXPOSURE PARAMETERS					
	units	children			
Days per week	days/wk	0.3			
Geometric Standard Deviation		1.6			
Blood lead level of concern (ug/dl)		1			
Skin area, residential	cm ²	2900			
Soil adherence	ug/cm ²	200			
Dermal uptake constant	(ug/dl)/(ug/day)	0.0001			
Soil ingestion	mg/day	100			
Soil ingestion, pica	mg/day	200			
Ingestion constant	(ug/dl)/(ug/day)	0.16			
Bioavailability	unitless	0.44			
Breathing rate	m³/day	6.8			
Inhalation constant	(ug/dl)/(ug/day)	0.192			

PATHWAYS							
CHILDREN	typical with pica						
	Pathway contribution			Pathwa	ay cont	ribution	
Pathway	PEF	ug/dl	percent	PEF	ug/dl	percent	
Soil Contact	2.5E-6	0.00	1%		0.00	0%	
Soil Ingestion	3.0E-4	0.54	99%	6.0E-4	1.09	100%	
Inhalation	8.4E-8	0.00	0%		0.00	0%	

Click here for REFERENCES

Hypothetical Camper Receptor

Days per week =
$$\frac{EF (days/year)}{52 (weeks/year)}$$

EF = Exposure Frequency = 14 days per year (BLM, 2017)

In accordance with the Bureau of Land Management (BLM) yearly recreational exposure frequency for recreational visitor, which includes a range of possible activities, including campling (BLM, 2017).

Reference:

BLM. 2017. BLM Technical Memorandum, Screening Assessment Approaches for Metals in Soil at BLM HazMat/AML Sites. September 2017 Update.

LeadSpread 8 for the Hypothetical Unauthorized Camper Receptor - Upper Bound Exposure with an Exposure Frequency of 28 days per year

LEAD RISK ASSESSMENT SPREADSHEET 8

CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL

Click here for ABBREVIATED INSTRUCTIONS FOR LEADSPREAD 8

INPUT	
MEDIUM	LEVEL
Lead in Soil/Dust (ug/g)	1080
Respirable Dust (ug/m³)	1.5

OUTPUT						
Percentile Estimate of Blood Pb (ug/dl)						PRG-90
	50th	90th	95th	98th	99th	(ug/g)
BLOOD Pb, CHILD	0.5	1.0	1.2	1.4	1.6	1079
BLOOD Pb, PICA CHILD	1.1	2.0	2.4	2.9	3.3	542

EXPOSURE PARAMETERS					
	units	children			
Days per week	days/wk	0.5			
Geometric Standard Deviation		1.6			
Blood lead level of concern (ug/dl)		1			
Skin area, residential	cm ²	2900			
Soil adherence	ug/cm ²	200			
Dermal uptake constant	(ug/dl)/(ug/day)	0.0001			
Soil ingestion	mg/day	100			
Soil ingestion, pica	mg/day	200			
Ingestion constant	(ug/dl)/(ug/day)	0.16			
Bioavailability	unitless	0.44			
Breathing rate	m³/day	6.8			
Inhalation constant	(ug/dl)/(ug/day)	0.192			

PATHWAYS						
CHILDREN	typical with pica				ca	
	Pathw	ay cont	ribution	Pathwa	ay cont	ribution
Pathway	PEF	ug/dl	percent	PEF	ug/dl	percent
Soil Contact	4.1E-6	0.00	1%		0.00	0%
Soil Ingestion	5.0E-4	0.54	99%	1.0E-3	1.09	100%
Inhalation	1.4E-7	0.00	0%		0.00	0%

Click here for REFERENCES

Hypothetical Camper Receptor

$$Days \ perweek = \frac{EF (days/year)}{52 \ (weeks/year)}$$

EF = Exposure Frequency = 14 days per year (BLM, 2017)

As an upperbound evaluation, the Bureau of Land Management (BLM) yearly recreational exposure frequency for recreational visitor of 14 days per year (BLM, 2017) was doubled to 24 days per year.

Reference:

BLM. 2017. BLM Technical Memorandum, Screening Assessment Approaches for Metals in Soil at BLM HazMat/AML Sites. September 2017 Update.

ATTACHMENT B2 RISK CHARACTERIZATION EQUATIONS

Risk Characterization Equations for Direct Exposure to COPCs in Soil

Noncarcinogenic Effects

Incidental Ingestion of Soil

$$Hazard\ Quotient = \frac{EPC_{soil} \times EF \times ED \times \left(\frac{1}{RfD}\right) \times \left(\frac{IRs}{10^6\,mg/kg}\right)}{BW \times ATn}$$

Dermal Contact with Soil

$$Hazard\ Quotient = \frac{EPC_{soil} \times EF \times ED \times \left(\frac{1}{RfD \times GIABS}\right) \times \left(\frac{SA \times AF \times ABS}{10^6\ mg/kg}\right)}{BW \times ATn}$$

Inhalation of Fugitive Dust in Outdoor Air from Soil

$$Hazard\ Quotient = \frac{EPC_{soil} \times EF \times ED \times ET \times \frac{1\ day}{24\ hours} \times \left(\frac{1}{RfC \times 0.001\ mg/\mu g}\right) \times \left(\frac{1}{PEF}\right)}{ATn}$$

Carcinogenic Effects

Incidental Ingestion of Soil

$$Excess \ Cancer \ Risk = \frac{EPC_{soil} \times EF \times ED \times SF \times \left(\frac{IRs}{10^6 \ mg/kg}\right)}{BW \times ATc}$$

Dermal Contact with Soil

$$Excess \ Cancer \ Risk = \frac{EPC_{soil} \times EF \times ED \times \left(\frac{SF}{GIABS}\right) \times \left(\frac{SA \times AF \times ABS}{10^6 \ mg/kg}\right)}{BW \times ATc}$$

Inhalation of Fugitive Dust in Outdoor Air from Soil

$$Excess \ Cancer \ Risk = \frac{EPC_{soil} \times EF \times ED \times ET \times \frac{1 \ day}{24 \ hours} \times \left(\frac{IUR}{0.001 \ mg/\mu g}\right) \times \left(\frac{1}{PEF}\right)}{ATc}$$

Definitions

EPC_{soil} = Exposure Point Concentration for Shallow Soil (mg/kg)

ATc = Averaging Time – Carcinogens (days)

ATn = Averaging Time – Noncarcinogens (days)

EF = Exposure Frequency (days/year)

ED = Exposure Duration (year)

ET = Exposure Time (hours/day)

BW = Body Weight (kg)

IRs = Soil Ingestion Rate (mg/day)

SA = Skin Surface Area (cm²)

AF = Soil Adherence Factor (mg/cm²-day)

ABS = Dermal Absorption Factor (unitless)

PEF = Particulate Emission Factor (m³/kg)

RfD = Oral Reference Dose (mg/kg-day)

RfC = Inhalation Reference Concentration (µg/m³)

SF = Oral Slope Factor (mg/kg-day)⁻¹

IUR = Inhalation Unit Risk Factor $(\mu g/m^3)^{-1}$

GIABS = Gastrointestinal absorption factor (unitless)

ATTACHMENT B3

PROUCL OUTPUT

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

General Sta 31 12 12 0.00491 0.986 0.087	Number of Distinct Observations Number of Non-Detects	31
31 12 12 0.00491 0.986	Number of Distinct Observations Number of Non-Detects	
31 12 12 0.00491 0.986	Number of Distinct Observations Number of Non-Detects	
12 12 0.00491 0.986	Number of Non-Detects	
12 0.00491 0.986		19
0.00491 0.986	Number of Distinct Non-Detects	19
0.986	Minimum Non-Detect	0.00639
	Maximum Non-Detect	0.00752
	Percent Non-Detects	61.29%
0.204	SD Detects	0.295
0.0794	CV Detects	1.446
2.056	Kurtosis Detects	4.243
		1.77!
	52 3	
mal GOF Test o	on Detects Only	
0.716	Shapiro Wilk GOF Test	
0.859	Detected Data Not Normal at 5% Significance Level	
0.269	Lilliefors GOF Test	
0.243	Detected Data Not Normal at 5% Significance Level	
ata Not Normal	at 5% Significance Level	
	·	
****		0.0376
	, ,	0.154
	` ''	0.145
	· ·	0.247
		0.246
0.317	99% KM Chebyshev UCL	0.457
E Taete on Date	acted Observations Only	
	-	
0.781	_	evel
0.234		
0.258	<u> </u>	_evel
pear Gamma Di		
a Statistics on D	Detected Data Only	
0.545	k star (bias corrected MLE)	0.464
0.375	Theta star (bias corrected MLE)	0.44
13.08	nu star (bias corrected)	11.14
0.204		
	<u> </u>	
		0.0851
		0.01
		2.383
	` '	0.432
		0.197
	nu star (bias corrected)	26.77
	A.F	.=-
		15.51
0.143	95% Gamma Adjusted UCL (use when n<50)	0.147
	0.716 0.859 0.269 0.243 Data Not Normal Using Normal C 0.0824 0.201 0.146 0.144 0.195 0.317 DF Tests on Det 0.414 0.781 0.234 0.258 pear Gamma D 13.08 0.204 DS Statistics on E 13.08 0.204 DS Statistics using the set has > 50% No. Small such as <1 method may yield in the set has set in the method may yield in the set has set in the method may yield in the set has set in the method may yield in the set has set in the method may yield in the set in the set has set in the method may yield in the set in the	Treat GOF Test on Detects Only 0.716 Shapiro Wilk GOF Test 0.859 Detected Data Not Normal at 5% Significance Level 0.269 Lilliefors GOF Test 0.243 Detected Data Not Normal at 5% Significance Level 1. Para Normal Critical Values and other Nonparametric UCLs 1. Para Normal Critical Values and other Nonparametric UCLs 1. Para Normal Critical Values and other Nonparametric UCLs 1. Para Normal Significance Level 1. Para Normal Significance UCL 1. Para Normal Signific

$\label{prouch} \textbf{ProUCL Output for Polycyclic Aromatic Hydrocarbons (PAHs) in Soil} \\$

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

Estimate	es of Gamma Para	ameters using KM Estimates	
Mean (KM)	0.0824	SD (KM)	0.201
Variance (KM)	0.0402	SE of Mean (KM)	0.0376
k hat (KM)	0.169	k star (KM)	0.174
nu hat (KM)	10.45	nu star (KM)	10.78
theta hat (KM)	0.488	theta star (KM)	0.474
80% gamma percentile (KM)	0.0999	90% gamma percentile (KM)	0.248
95% gamma percentile (KM)	0.439	99% gamma percentile (KM)	0.979
	Gamma Kaplan-N	leier (KM) Statistics	
Approximate Chi Square Value (10.78, α)	4.433	Adjusted Chi Square Value (10.78, β)	4.208
95% Gamma Approximate KM-UCL (use when n>=50)	0.2	95% Gamma Adjusted KM-UCL (use when n<50)	0.211
· ·		Detected Observations Only	
Shapiro Wilk Test Statistic	0.938	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.859	Detected Data appear Lognormal at 5% Significance Leve	el
Lilliefors Test Statistic	0.182	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.243	Detected Data appear Lognormal at 5% Significance Leve	9
Detected	Data appear Log	normal at 5% Significance Level	
Lognor	mal DOS Statistics	Using Imputed Non-Detects	
Mean in Original Scale		Mean in Log Scale	-4.483
SD in Original Scale	0.204	SD in Log Scale	1.771
95% t UCL (assumes normality of ROS data)	0.144	95% Percentile Bootstrap UCL	0.146
95% BCA Bootstrap UCL	0.18	95% Bootstrap t UCL	0.248
95% H-UCL (Log ROS)	0.167	30% 2000 149 1002	0.2-10
Statistics using KM es	stimates on Logge	ed Data and Assuming Lognormal Distribution	
KM Mean (logged)	-4.253	KM Geo Mean	0.0142
KM SD (logged)	1.604	95% Critical H Value (KM-Log)	3.224
KM Standard Error of Mean (logged)	0.305	95% H-UCL (KM -Log)	0.132
KM SD (logged)	1.604	95% Critical H Value (KM-Log)	3.224
KM Standard Error of Mean (logged)	0.305		
		<u> </u>	
	DL/2 St	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.0811	Mean in Log Scale	-4.533
SD in Original Scale	0.204	SD in Log Scale	1.804
95% t UCL (Assumes normality)	0.143	95% H-Stat UCL	0.174
DL/2 is not a recomm	ended method, p	rovided for comparisons and historical reasons	
New		untur Francisco (IO) Obstatura	
•		ution Free UCL Statistics	
Detected Date	a appear Gamma	Distributed at 5% Significance Level	
	hetsennus	UCL to Use	
Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but		332 233	
k<=1)	0.211		
Note: Suggestions regarding the selection of	a 95% UCL are pro	vided to help the user to select the most appropriate 95% UCL.	
** * *		a size, data distribution, and skewness.	
		ulation studies summarized in Singh, Maichle, and Lee (2006).	
		ts; for additional insight the user may want to consult a statistician.	
nowever, simulations results will not cover all	Real World data se	is, for additional insigniture user may want to consult a statistician.	

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

ACENAPHTHENE			
	01	On all all a	
Total Number of Observations	General S	Number of Distinct Observations	29
Number of Detects	10	Number of Distinct Observations Number of Non-Detects	2.
Number of Distinct Detects	10	Number of Distinct Non-Detects	20
Minimum Detect	0.00499	Minimum Non-Detect	0.00639
Maximum Detect	0.651	Maximum Non-Detect	0.00053
Variance Detects	0.0384	Percent Non-Detects	67.74%
Mean Detects	0.131	SD Detects	0.196
Median Detects	0.0815	CV Detects	1.50
Skewness Detects	2.481	Kurtosis Detects	6.663
Mean of Logged Detects	-3.053	SD of Logged Detects	1.65
!	Normal GOF Test	t on Detects Only	
Shapiro Wilk Test Statistic	0.664	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.842	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.334	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.262	Detected Data Not Normal at 5% Significance Level	
Detecte	d Data Not Norm	al at 5% Significance Level	
Korton Malay (GA) Obsta	d	Critical Values and other Nonparametric UCLs	
KM Mean	0.0456	<u> </u>	0.0229
KM SD		KM Standard Error of Mean	0.0229
	0.121	95% KM (BCA) UCL	0.0838
95% KM (t) UCL 95% KM (z) UCL	0.0844	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	0.0838
90% KM (2) UCL	0.0832	95% KM Chebyshev UCL	0.150
97.5% KM Chebyshev UCL	0.114	99% KM Chebyshev UCL	0.145
97.5% RIVI Chebyshev OCL	0.100	33 /0 INVI CHEDYSHEV UCL	0.273
<u> </u>	I.	·	
Gamma	GOF Tests on De	etected Observations Only	
Gamma A-D Test Statistic	GOF Tests on De	, ,	
		etected Observations Only	e Level
A-D Test Statistic	0.418	etected Observations Only Anderson-Darling GOF Test	e Level
A-D Test Statistic 5% A-D Critical Value	0.418 0.768	etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance	
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.418 0.768 0.199 0.279	etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF	
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data	0.418 0.768 0.199 0.279 appear Gamma	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level	
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data	0.418 0.768 0.199 0.279 appear Gamma	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level	e Level
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Gai	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only k star (bias corrected MLE)	e Level 0.491
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Gai k hat (MLE) Theta hat (MLE)	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	0.491 0.266
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Gai k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215 12.13	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only k star (bias corrected MLE)	0.491 0.266
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Gai k hat (MLE) Theta hat (MLE)	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	0.491 0.266
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Gai k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215 12.13 0.131	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level I Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.491 0.266
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Qai k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215 12.13 0.131	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level I Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.491 0.266
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when data	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215 12.13 0.131 ROS Statistics use ata set has > 50% N	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level I Detected Data Only R star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs	0.491 0.266
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Rear (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when kstar of detects	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215 12.13 0.131 ROS Statistics use ata set has > 50% N s is small such as	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level I Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.491 0.266
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Gai k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when data GROS may not be used when star of detects For such situations, GR	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215 12.13 0.131 a ROS Statistics us sta set has > 50% N s is small such as 4	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level I Detected Data Only A star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20)	0.491 0.266
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when data GROS may not be used when kstar of detects For such situations, GR This is es	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215 12.13 0.131 a ROS Statistics us sta set has > 50% N s is small such as <	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects ADS with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs	0.491 0.266
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when data GROS may not be used when kstar of detects For such situations, GR This is es	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215 12.13 0.131 a ROS Statistics us sta set has > 50% N s is small such as <	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small.	0.491 0.266 9.826
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data GROS may not be used when kstar of detects For such situations, GR This is es For gamma distributed detected data, BT	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215 12.13 0.131 IROS Statistics us sta set has > 50% N s is small such as OS method may yi specially true when Vs and UCLs may	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates	0.491 0.266 9.826
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when detects For such situations, GR This is es For gamma distributed detected data, BT Minimum	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215 12.13 0.131 1ROS Statistics us ata set has > 50% N is is small such as a cosmologically true when Vs and UCLs may 0.00499	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean	0.491 0.266 9.826 0.0488 0.01
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when data GROS may not be used detected for such situations, GR This is es For gamma distributed detected data, BT Minimum Maximum	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215 12.13 0.131 I ROS Statistics us ata set has > 50% N s is small such as a COS method may yi specially true when Vs and UCLs may 0.00499 0.651	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level A Detected Data Only R star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects ADs with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median	0.491 0.266 9.826 0.0488 0.0488
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Gai k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when de GROS may not be used when desert of detects For such situations, GR This is es For gamma distributed detected data, BT Minimum Maximum SD	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215 12.13 0.131 I ROS Statistics us ata set has > 50% N s is small such as a ROS method may ye specially true when Vs and UCLs may 0.00499 0.651 0.122	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level I Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Sing Imputed Non-Detects IDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median CV	0.491 0.266 9.826 0.0488 0.01 2.488 0.538
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when data GROS may not be used when kstar of detects For such situations, GR This is es For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE)	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215 12.13 0.131 I ROS Statistics us ata set has > 50% N s is small such as COS method may yi specially true when Vs and UCLs may 0.00499 0.651 0.122 0.573	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level I Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.491 0.266 9.826 0.0489 0.01 2.488 0.530 0.0907
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when data GROS may not be used when kstar of detects For such situations, GR This is es For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE) Theta hat (MLE)	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215 12.13 0.131 a ROS Statistics us ata set has > 50% N s is small such as a 80S method may yi specially true when Vs and UCLs may 0.00499 0.6551 0.122 0.573	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level A Detected Data Only R star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.491 0.266 9.826 0.0489 0.01 2.488 0.539 0.0907
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data GROS may not be used when kstar of detects For such situations, GR This is es For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE) Theta hat (MLE) Theta hat (MLE)	0.418 0.768 0.199 0.279 appear Gamma mma Statistics on 0.607 0.215 12.13 0.131 I ROS Statistics us ata set has > 50% N is is small such as COS method may yi specially true when Vs and UCLs may 0.00499 0.651 0.122 0.573 0.0854 35.51	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level A Detected Data Only R star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	

$\label{prouch} \textbf{ProUCL Output for Polycyclic Aromatic Hydrocarbons (PAHs) in Soil} \\$

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

	s of Gamma Parame	eters using rim estimates	
Mean (KM)	0.0456	SD (KM)	0.121
Variance (KM)	0.0146	SE of Mean (KM)	0.0229
k hat (KM)	0.143	k star (KM)	0.15
nu hat (KM)	8.852	nu star (KM)	9.329
theta hat (KM)	0.32	theta star (KM)	0.303
80% gamma percentile (KM)	0.0498	90% gamma percentile (KM)	0.135
95% gamma percentile (KM)	0.251	99% gamma percentile (KM)	0.586
	Gamma Kaplan-Mele	er (KM) Statistics	
Approximate Chi Square Value (9.33, α)	3.527	Adjusted Chi Square Value (9.33, β)	3.33
95% Gamma Approximate KM-UCL (use when n>=50)	0.121	95% Gamma Adjusted KM-UCL (use when n<50)	0.128
<u> </u>		tected Observations Only	
Shapiro Wilk Test Statistic	0.923	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.842	Detected Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.214	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.262	Detected Data appear Lognormal at 5% Significance Level	
Detected	Data appear Lognor	rmal at 5% Significance Level	
Lamon	I DOO Oodedee I Ie	along Imported Non Detecto	
		sing imputed Non-Detects	E 064
Mean in Original Scale	0.0438	Mean in Log Scale	-5.064 1.691
SD in Original Scale 95% t UCL (assumes normality of ROS data)	0.123	SD in Log Scale 95% Percentile Bootstrap UCL	0.0808
95% LUCE (assumes normality of ROS data) 95% BCA Bootstrap UCL	0.0814	95% Bootstrap t UCL	0.0808
95% H-UCL (Log ROS)	0.0743	95% Boolstrap (OCL	0.107
93/811-0CE (Lug1103)	0.0743		
Statistics using KM as	timates on Logged C	Data and Assuming Lognormal Distribution	
KM Mean (logged)	-4.552	KM Geo Mean	0.0105
KM SD (logged)	1.366	95% Critical H Value (KM-Log)	2.892
KM Standard Error of Mean (logged)	0.26	95% H-UCL (KM -Log)	0.0552
KM SD (logged)	1.366	95% Critical H Value (KM-Log)	
			2.892
KM Standard Error of Mean (logged)	0.26	, ,	2.892
	0.26		2.892
KM Standard Error of Mean (logged)	0.26 DL/2 Statis		2.892
KM Standard Error of Mean (logged) DL/2 Normal	DL/2 Statis	stics DL/2 Log-Transformed	
KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale	DL/2 Statis	stics DL/2 Log-Transformed Mean in Log Scale	-4.826
KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale	0.0445 0.123	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale	-4.826 1.538
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality)	0.0445 0.123 0.082	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL	-4.826 1.538
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality)	0.0445 0.123 0.082	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale	-4.826 1.538
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recomm	0.0445 0.123 0.082 ended method, provi	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL	-4.826 1.538 0.063
Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recomm	0.0445 0.123 0.082 ended method, provi	Stics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL Aded for comparisons and historical reasons	-4.826 1.538
Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recomm	0.0445 0.123 0.082 ended method, provi	DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL Vided for comparisons and historical reasons on Free UCL Statistics	-4.826 1.538
Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recomm	0.0445 0.123 0.082 ended method, provi	Stics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL Added for comparisons and historical reasons on Free UCL Statistics stributed at 5% Significance Level	-4.826 1.538
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recomm Nong Detected Date Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but	DL/2 Statis 0.0445 0.123 0.082 ended method, provi	Stics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL Added for comparisons and historical reasons on Free UCL Statistics stributed at 5% Significance Level	-4.826 1.538
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 ls not a recomm	0.0445 0.123 0.082 ended method, provi	Stics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL Added for comparisons and historical reasons on Free UCL Statistics stributed at 5% Significance Level	-4.826 1.538
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recomm Nong Detected Date Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but	0.0445 0.123 0.082 ended method, provi	Stics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL Added for comparisons and historical reasons on Free UCL Statistics stributed at 5% Significance Level	-4.826 1.538
MM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recomm Nong Detected Date Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) Note: Suggestions regarding the selection of	0.0445 0.123 0.082 ended method, provide a appear Gamma Dis Suggested UC 0.128	Bitics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL Added for comparisons and historical reasons on Free UCL Statistics Estributed at 5% Significance Level CL to Use ed to help the user to select the most appropriate 95% UCL.	-4.826 1.538
MM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recomm Nong Detected Date Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) Note: Suggestions regarding the selection of Recommendations are	DL/2 Statis 0.0445 0.123 0.082 ended method, provi parametric Distributio a appear Gamma Dis Suggested UC 0.128 a 95% UCL are provide are based upon data siz	Bitics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL Added for comparisons and historical reasons on Free UCL Statistics Stributed at 5% Significance Level CL to Use ed to help the user to select the most appropriate 95% UCL. ze, data distribution, and skewness.	-4.826 1.538
Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recomm Nonp Detected Date Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) Note: Suggestions regarding the selection of Recommendations at These recommendations are based upon the	DL/2 Statis 0.0445 0.123 0.082 ended method, provide a appear Gamma Dis Suggested UC 0.128 a 95% UCL are provide are based upon data size are sults of the simulation	Bitics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL Added for comparisons and historical reasons on Free UCL Statistics Estributed at 5% Significance Level CL to Use ed to help the user to select the most appropriate 95% UCL.	-4.826 1.538

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

O(A)ANTHRACENE			
ОСУДИТИНОСТЬ			
	General Stat	· · · · ·	
Total Number of Observations	31	Number of Distinct Observations	3
Number of Detects	23	Number of Non-Detects	
Number of Distinct Detects	23	Number of Distinct Non-Detects	
Minimum Detect	0.00212	Minimum Non-Detect	0.0064
Maximum Detect	8.45	Maximum Non-Detect	0.0074
Variance Detects	6.503	Percent Non-Detects	25.819
Mean Detects	1.42	SD Detects	2.5
Median Detects	0.0544	CV Detects	1.79
Skewness Detects	1.725	Kurtosis Detects	1.7
Mean of Logged Detects	-2.517	SD of Logged Detects	2.95
N	ormal GOF Test on	n Detects Only	
Shapiro Wilk Test Statistic	0.621	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.914	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.408	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.18	Detected Data Not Normal at 5% Significance Level	
Detected	Data Not Normal a	at 5% Significance Level	
Vanian Major //A/I Statistic	nucina Normal Cri	itical Values and other Nonparametric UCLs	
KM Mean	1.054	KM Standard Error of Mean	0.41
KM SD	2.236		
		95% KM (BCA) UCL	1.83
95% KM (t) UCL	1.751	95% KM (Percentile Bootstrap) UCL	1.75
95% KM (z) UCL	1.73 2.286	95% KM Bootstrap t UCL	2.12
			2.84
90% KM Chebyshev UCL		95% KM Chebyshev UCL	
97.5% KM Chebyshev UCL	3.619	99% KM Chebyshev UCL	5.14
97.5% KM Chebyshev UCL	3.619	· ·	
97.5% KM Chebyshev UCL	3.619	99% KM Chebyshev UCL	
97.5% KM Chebyshev UCL	3.619	99% KM Chebyshev UCL	5.1
97.5% KM Chebyshev UCL Gamma G A-D Test Statistic	3.619 FOF Tests on Detection 1.447	99% KM Chebyshev UCL cted Observations Only Anderson-Darling GOF Test	5.1
97.5% KM Chebyshev UCL Gamma G A-D Test Statistic 5% A-D Critical Value	3.619 COF Tests on Detect 1.447 0.874	99% KM Chebyshev UCL cted Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le	5.1
97.5% KM Chebyshev UCL Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	3.619 XOF Tests on Detect 1.447 0.874 0.212 0.199	99% KM Chebyshev UCL cted Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF	5.1
97.5% KM Chebyshev UCL Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data	3.619 1.447 0.874 0.212 0.199 Not Gemme Distrib	99% KM Chebyshev UCL Cted Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le buted at 5% Significance Level	5.1
97.5% KM Chebyshev UCL Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data I	3.619 1.447 0.874 0.212 0.199 Not Gamma Distrib	99% KM Chebyshev UCL Cted Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le puted at 5% Significance Level	5.1
97.5% KM Chebyshev UCL Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data K hat (MLE)	3.619 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De	99% KM Chebyshev UCL Cted Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le puted at 5% Significance Level etected Data Only k star (bias corrected MLE)	5.1 evel 0.24
97.5% KM Chebyshev UCL Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data k hat (MLE) Theta hat (MLE)	3.619 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725	99% KM Chebyshev UCL Cited Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le puted at 5% Significance Level estected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	5.1 evel 0.24 5.80
97.5% KM Chebyshev UCL Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data K hat (MLE)	3.619 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De	99% KM Chebyshev UCL Cted Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le puted at 5% Significance Level etected Data Only k star (bias corrected MLE)	5.1 evel 0.24 5.80
97.5% KM Chebyshev UCL Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data k hat (MLE) Theta hat (MLE) nu hat (MLE)	3.619 IOF Tests on Detect 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725 11.41	99% KM Chebyshev UCL Cited Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le puted at 5% Significance Level estected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	5.1 evel 0.24 5.80
97.5% KM Chebyshev UCL Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data K hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	3.619 ROF Tests on Detect 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725 11.41 1.42 ROS Statistics using	99% KM Chebyshev UCL Cted Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le puted at 5% Significance Level stected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	5.1 evel 0.24 5.80
97.5% KM Chebyshev UCL Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data I Gamma K hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma F GROS may not be used when data	3.619 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725 11.41 1.42 ROS Statistics using set has > 50% NDs	99% KM Chebyshev UCL Cted Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le puted at 5% Significance Level star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) g imputed Non-Detects s with many tied observations at multiple DLs	5.1- evel 0.24 5.80
Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data I K hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma F GROS may not be used when data GROS may not be used when kstar of detects is	3.619 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725 11.41 1.42 ROS Statistics using uset has > 50% NDs s small such as <1.0	99% KM Chebyshev UCL Cted Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le puted at 5% Significance Level Star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) g imputed Non-Detects s with many tied observations at multiple DLs D, especially when the sample size is small (e.g., <15-20)	5.1 evel 0.24 5.80
Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data I K hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma F GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GRO	3.619 20F Tests on Detect 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725 11.41 1.42 20S Statistics using set has > 50% NDs s small such as <1.0 S method may yield	99% KM Chebyshev UCL Cted Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le Duted at 5% Significance Level Star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) g imputed Non-Detects swith many tied observations at multiple DLs O, especially when the sample size is small (e.g., <15-20)	5.1- evel 0.24 5.80
Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data I K hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma F GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GRO This is espec	3.619 20F Tests on Detect 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725 11.41 1.42 20S Statistics using set has > 50% NDs s small such as <1.0 S method may yield exially true when the	99% KM Chebyshev UCL Cted Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le Duted at 5% Significance Level Start (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) g imputed Non-Detects s with many tied observations at multiple DLs O, especially when the sample size is small (e.g., <15-20) Incorrect values of UCLs and BTVs s sample size is small.	5.1- evel 0.24 5.80
Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma F GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GRO This is esper	3.619 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725 11.41 1.42 ROS Statistics using set has > 50% NDs s small such as <1.0 S method may yield cially true when the	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Les Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Les Outed at 5% Significance Level Star (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) In ustar (bias corrected) In ustar (bias corrected) Significance Level Computed Non-Detects Significance Level Computed Von-Detects Significance Level A star (bias corrected) Discorrected MLE) Significance Level Computed Non-Detects Significance Level A star (bias corrected MLE) Discorrected MLE) Computed Von-Detects Significance Level Computed Von-Detects Significance Level Computed Volume Corrected MLE) Computed Volume	5.1 evel 0.24 5.80 11.2
Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data I Ream k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma F GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GRO This is esper For gamma distributed detected data, BTVs Minimum	3.619 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725 11.41 1.42 ROS Statistics using set has > 50% NDs s small such as <1.0 S method may yield ecially true when the s and UCLs may be o 0.00212	Petected Data Not Gamma Distributed at 5% Significance Letted Data Only A star (bias corrected MLE)	5.1 evel 0.24 5.80 11.2
Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data I Reamma G Gamma G Gamma G K hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma F GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GRO This is esper For gamma distributed detected data, BTVs Minimum Maximum	3.619 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725 11.41 1.42 ROS Statistics using set has > 50% NDs s small such as <1.0 S method may yield ecially true when the s and UCLs may be c 0.00212 8.45	99% KM Chebyshev UCL Cited Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le Duted at 5% Significance Level Selected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) g imputed Non-Detects with many tied observations at multiple DLs O, especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median	5.1 evel 0.24 5.80 11.2
Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data I Gamma G K hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma F GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GRO This is esper For gamma distributed detected data, BTVs Minimum Maximum SD	3.619 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725 11.41 1.42 ROS Statistics using 1.55 the second of the sec	99% KM Chebyshev UCL Cited Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Letter Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Letter Data Significance Letter Data Significance Letter Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) g imputed Non-Detects swith many tied observations at multiple DLs of especially when the sample size is small (e.g., <15-20) Incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median CV	5.1 evel 0.24 5.80 11.2
Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data I Gamma G K hat (MLE) Theta hat (MLE) Theta hat (MLE) Mean (detects) Gamma F GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GRO This is esper For gamma distributed detected data, BTVs Minimum Maximum SD k hat (MLE)	3.619 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725 11.41 1.42 ROS Statistics using 1 set has > 50% NDs 1 s s small such as <1.0 1 s method may yield 2 set and UCLs may be of 0.00212 0.00212 0.231	99% KM Chebyshev UCL Cited Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Letter (Significance Letter) Detected Data Not Gamma Distributed at 5% Significance Letter (Data Significance Letter) Detected Data Only In star (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE) The star (bias corrected MLE) The star (bias corrected MLE) Significance Level Detected Data Only In star (bias corrected MLE) Deserting Significance Level Detected Data Only In star (bias corrected MLE) Deserting Significance Level Detected Data Only In star (bias corrected MLE) Deserting Significance Level Detected Data Only In star (bias corrected MLE) Deserting Significance Level Detected Data Only 5.1 evel 0.24 5.80 11.2 1.05 0.0 2.15 0.2	
Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data K hat (MLE) Theta hat (MLE) Mean (detects) Gamma F GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GRO This is esper For gamma distributed detected data, BTVs Minimum Maximum SD k hat (MLE) Theta hat (MLE)	3.619 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725 11.41 1.42 ROS Statistics using uset has > 50% NDs s small such as <1.0 S method may yield acially true when the s and UCLs may be of 0.00212 8.45 2.272 0.231 4.567	299% KM Chebyshev UCL Cited Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Letter (Significance Letter) Detected Data Not Gamma Distributed at 5% Significance Letter (Data Significance Letter) Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Discorrected Maccorrected Maccorrected Maccorrected Maccorrected Maccorrected) Discorrect values of UCLs and BTVs Example size is small. Computed using gamma distribution on KM estimates Mean Median CV Restar (bias corrected MLE) Theta star (bias corrected MLE)	5.1 evel 0.24 5.80 11.2 1.05 0.0 2.15 0.2 4.58
Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data I Gamma G K hat (MLE) Theta hat (MLE) Theta hat (MLE) Mean (detects) Gamma F GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GRO This is esper For gamma distributed detected data, BTVs Minimum Maximum SD k hat (MLE)	3.619 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725 11.41 1.42 ROS Statistics using set has > 50% NDs s small such as <1.0 S method may yield exically true when the s and UCLs may be of 0.00212 8.45 2.272 0.231 4.567 14.34	99% KM Chebyshev UCL Cited Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Letter (Significance Letter) Detected Data Not Gamma Distributed at 5% Significance Letter (Data Significance Letter) Detected Data Only In star (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE) The star (bias corrected MLE) The star (bias corrected MLE) Significance Level Detected Data Only In star (bias corrected MLE) Deserting Significance Level Detected Data Only In star (bias corrected MLE) Deserting Significance Level Detected Data Only In star (bias corrected MLE) Deserting Significance Level Detected Data Only In star (bias corrected MLE) Deserting Significance Level Detected Data Only 5.1 evel 0.24 5.80 11.2 1.05 0.0 2.15 0.2 4.58	
Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data K hat (MLE) Theta hat (MLE) Mean (detects) Gamma F GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GRO This is esper For gamma distributed detected data, BTVs Minimum Maximum SD k hat (MLE) Theta hat (MLE)	3.619 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725 11.41 1.42 ROS Statistics using uset has > 50% NDs s small such as <1.0 S method may yield acially true when the s and UCLs may be or 0.00212 8.45 2.272 0.231 4.567	299% KM Chebyshev UCL Cited Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Letter (Significance Letter) Detected Data Not Gamma Distributed at 5% Significance Letter (Data Significance Letter) Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Discorrected Maccorrected Maccorrected Maccorrected Maccorrected Maccorrected) Discorrect values of UCLs and BTVs Example size is small. Computed using gamma distribution on KM estimates Mean Median CV Restar (bias corrected MLE) Theta star (bias corrected MLE)	5.1 evel 0.24 5.80 11.2 1.05 0.0 2.15 0.2 4.58
Gamma G A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data I Gamma G K hat (MLE) Theta hat (MLE) Mean (detects) Gamma F GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GRO This is esper For gamma distributed detected data, BTVs Minimum Maximum SD k hat (MLE) Theta hat (MLE) Theta hat (MLE) In uhat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE)	3.619 1.447 0.874 0.212 0.199 Not Gamma Distrib ma Statistics on De 0.248 5.725 11.41 1.42 ROS Statistics using set has > 50% NDs s small such as <1.0 S method may yield exically true when the s and UCLs may be of 0.00212 8.45 2.272 0.231 4.567 14.34	299% KM Chebyshev UCL Cited Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Letter (Significance Letter) Detected Data Not Gamma Distributed at 5% Significance Letter (Data Significance Letter) Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Discorrected Maccorrected Maccorrected Maccorrected Maccorrected Maccorrected) Discorrect values of UCLs and BTVs Example size is small. Computed using gamma distribution on KM estimates Mean Median CV Restar (bias corrected MLE) Theta star (bias corrected MLE)	5.1a

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

Estimate	s of Gamma Para	ameters using KM Estimates	
Mean (KM)	1.054	SD (KM)	2.236
Variance (KM)	5	SE of Mean (KM)	0.411
k hat (KM)	0.222	k star (KM)	0.222
nu hat (KM)	13.78	nu star (KM)	13.78
theta hat (KM)	4.742	theta star (KM)	4.742
80% gamma percentile (KM)	1.462	90% gamma percentile (KM)	3.184
95% gamma percentile (KM)	5.279	99% gamma percentile (KM)	10.95
	•	,	
	Gamma Kaplan-M	leier (KM) Statistics	
Approximate Chi Square Value (13.78, α)	6.424	Adjusted Chi Square Value (13.78, β)	6.145
95% Gamma Approximate KM-UCL (use when n>=50)	2.262	95% Gamma Adjusted KM-UCL (use when n<50)	2.365
· · · · · · · · · · · · · · · · · · ·		Detected Observations Only	
Shapiro Wilk Test Statistic	0.894	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.914	Detected Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.152	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.18	Detected Data appear Lognormal at 5% Significance Leve	
Detected Data	appear Approxim	ate Lognormal at 5% Significance Level	
Lagran		Hele a broade d New Bods de	
•		Using Imputed Non-Detects	0.000
Mean in Original Scale	1.054	Mean in Log Scale	-3.323
SD in Original Scale	2.273	SD in Log Scale	2.886
95% t UCL (assumes normality of ROS data)	1.747	95% Percentile Bootstrap UCL	1.761
95% BCA Bootstrap UCL	1.904 35.92	95% Bootstrap t UCL	2.015
95% H-UCL (Log ROS)	35.92		
Statistics using KM es	timates on Logge	nd Data and Assuming Lognormal Distribution	
KM Mean (logged)	-3.365	KM Geo Mean	0.0346
KM SD (logged)	2.877	95% Critical H Value (KM-Log)	5.189
KM Standard Error of Mean (logged)	0.53	95% H-UCL (KM -Log)	33.13
KM SD (logged)	2.877	95% Critical H Value (KM-Log)	5.189
KM Standard Error of Mean (logged)	0.53	3,	
	DL/2 St	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.054	Mean in Log Scale	-3.326
SD in Original Scale	2.273	SD in Log Scale	2.888
95% t UCL (Assumes normality)	1.747	95% H-Stat UCL	36.17
DL/2 is not a recomm	ended method, p	rovided for comparisons and historical reasons	
		ution Free UCL Statistics	·
Detected Data appe	ar Approximate L	ognormal Distributed at 5% Significance Level	
		UCL to Use	
97.5% KM (Chebyshev) UCL	3.619		
Man O Toronto	- 0E0/ LIQI	and deliver the reserve and a selection of the second seco	
** * *		vided to help the user to select the most appropriate 95% UCL.	
		size, data distribution, and skewness.	
		ulation studies summarized in Singh, Maichle, and Lee (2006).	
nowever, simulations results will not cover all	nedi vvoria data sel	ts; for additional insight the user may want to consult a statistician.	

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

BENZO(A)PYRENE			
* -			
	General	Statistics	
Total Number of Observations	31	Number of Distinct Observations	3
Number of Detects	26	Number of Non-Detects	Ę
Number of Distinct Detects	26	Number of Distinct Non-Detects	Ę
Minimum Detect	0.00239	Minimum Non-Detect	0.00644
Maximum Detect	11.7	Maximum Non-Detect	0.00741
Variance Detects	13.75	Percent Non-Detects	16.13%
Mean Detects	1.848	SD Detects	3.708
Median Detects	0.0747	CV Detects	2.006
Skewness Detects	1.964	Kurtosis Detects	2.43
Mean of Logged Detects	-2.61	SD of Logged Detects	3.057
	N	Ave Date de Cale	
Shapiro Wilk Test Statistic	0.555	st on Detects Only Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.92	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.425	Lillefors GOF Test	
5% Lilliefors Critical Value	0.423	Detected Data Not Normal at 5% Significance Level	
	_	nal at 5% Significance Level	
	04 244 1101110111	and a to to digital and a control	
Kaplan-Meier (KM) Statis	stics using Norma	I Critical Values and other Nonparametric UCLs	
KM Mean	1.551	KM Standard Error of Mean	0.622
KM SD	3.398	95% KM (BCA) UCL	2.686
95% KM (t) UCL	2.607	95% KM (Percentile Bootstrap) UCL	2.626
95% KM (z) UCL	2.575	95% KM Bootstrap t UCL	3.159
90% KM Chebyshev UCL	3.418	95% KM Chebyshev UCL	4.264
97.5% KM Chebyshev UCL	5.438	99% KM Chebyshev UCL	7.743
	I	<u> </u>	
Gamma	a GOF Tests on D	etected Observations Only	
A-D Test Statistic	1.896		
	1.050	Anderson-Darling GOF Test	
5% A-D Critical Value	0.889	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I	Level
		-	Level
5% A-D Critical Value	0.889	Detected Data Not Gamma Distributed at 5% Significance I	
5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.889 0.231 0.189	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF	
5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da	0.889 0.231 0.189 Ita Not Gamma Di	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level	
5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da	0.889 0.231 0.189 ta Not Gamma Di	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level Detected Data Only	Level
5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da	0.889 0.231 0.189 Ita Not Gamma Di	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level	Level
5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da Gat k hat (MLE) Theta hat (MLE)	0.889 0.231 0.189 ta Not Gamma Di amma Statistics or 0.224 8.244	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	0.224 8.253
5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da Ga k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.889 0.231 0.189 ta Not Gamma Di amma Statistics or 0.224 8.244 11.66	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level n Detected Data Only k star (bias corrected MLE)	0.224 8.253
5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da Gat k hat (MLE) Theta hat (MLE)	0.889 0.231 0.189 ta Not Gamma Di amma Statistics or 0.224 8.244	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	0.224 8.253
5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da Gather Common Co	0.889 0.231 0.189 amma Statistics or 0.224 8.244 11.66 1.848	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level n Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.224 8.253
S% A-D Critical Value K-S Test Statistic S% K-S Critical Value Detected De R hat (MLE) Theta hat (MLE) Mean (detects) Gamm	0.889 0.231 0.189 1ta Not Gamma Di amma Statistics or 0.224 8.244 11.66 1.848	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects	0.224 8.253
S% A-D Critical Value K-S Test Statistic S% K-S Critical Value Detected Da Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamm GROS may not be used when or	0.889 0.231 0.189 Ita Not Gamma Di amma Statistics or 0.224 8.244 11.66 1.848 a ROS Statistics u data set has > 50% f	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs	0.224 8.253
S% A-D Critical Value K-S Test Statistic S% K-S Critical Value Detected Da Gat k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when co	0.889 0.231 0.189 ta Not Gamma Di amma Statistics or 0.224 8.244 11.66 1.848 a ROS Statistics u lata set has > 50% I ts is small such as	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20)	0.224 8.253
S% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da Gat k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamm GROS may not be used when cate of GROS may not be used when kstar of detects For such situations, G	0.889 0.231 0.189 ta Not Gamma Di amma Statistics or 0.224 8.244 11.66 1.848 a ROS Statistics u data set has > 50% I ts is small such as ROS method may y	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) vield incorrect values of UCLs and BTVs	0.224 8.253
S% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da Gai k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamm GROS may not be used when c GROS may not be used when kstar of detec For such situations, Gi This is e	0.889 0.231 0.189 ta Not Gamma Di amma Statistics or 0.224 8.244 11.66 1.848 a ROS Statistics u tts is small such as ROS method may y especially true wher	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) vield incorrect values of UCLs and BTVs the sample size is small.	0.224 8.253
5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da Gat k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamm GROS may not be used when company of the co	0.889 0.231 0.189 ta Not Gamma Di amma Statistics or 0.224 8.244 11.66 1.848 a ROS Statistics u data set has > 50% I ts is small such as ROS method may y especially true wher	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs the sample size is small.	0.224 8.253 11.65
5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da Gat k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamm GROS may not be used when can grow any not be used when can grow any not be used when kstar of detects For such situations, Git of the gamma distributed detected data, Bit of gamma distributed data.	0.889 0.231 0.189 ta Not Gamma Di amma Statistics or 0.224 8.244 11.66 1.848 a ROS Statistics u tata set has > 50% It ts is small such as ROS method may by especially true wher TVs and UCLs may 0.00239	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level In Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs It he sample size is small. We computed using gamma distribution on KM estimates Mean	0.224 8.253 11.65
5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da Gat k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamm GROS may not be used when can grow any not	0.889 0.231 0.189 0.289 0.294 0.224 8.244 11.66 1.848 a ROS Statistics u data set has > 50% I ts is small such as ROS method may be specially true wher TVs and UCLs may 0.00239 11.7	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level In Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) vield incorrect values of UCLs and BTVs In the sample size is small. Viel computed using gamma distribution on KM estimates Mean Median	0.224 8.253 11.65 1.552
5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da Gat k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamm GROS may not be used when care GROS may not be used when kstar of detect For such situations, Gat This is each of the care of	0.889 0.231 0.189 0.289 0.294 0.224 0.224 0.224 0.224 0.244 0.11.66 0.848 0.00239 0.00239 0.00239 0.00239 0.00239 0.00239 0.00239 0.00239 0.00239	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level In Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) vield incorrect values of UCLs and BTVs the sample size is small. v be computed using gamma distribution on KM estimates Mean Median CV	0.224 8.253 11.65 1.552 0.01 2.226
S% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da R k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when can be used when can be used when kstar of detects For such situations, G This is ear of gamma distributed detected data, B Minimum Maximum SD k hat (MLE)	0.889 0.231 0.189 Ita Not Gamma Di Ita Not Gam	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level In Detected Data Only R star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs In the sample size is small. Very be computed using gamma distribution on KM estimates Mean Median CV K star (bias corrected MLE)	0.224 8.253 11.65 1.552 0.01 2.226 0.216
5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da Reference of the state of the state of detects of the state of detects of the state	0.889 0.231 0.189 Ita Not Gamma Di Ita Not Gam	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected)	1.552 0.216 0.224 8.253 11.65 1.552 0.216 0.216 7.172
5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da R k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when kstar of detected when kstar of detected by the situations, Gross may not be used when kstar of detected by the situations, Gross may not be used when kstar of detected by the situations, Gross may not be used when kstar of detected by the situations, Gross may not be used when kstar of detected by the situations of the situation of the si	0.889 0.231 0.189 ta Not Gamma Di amma Statistics or 0.224 8.244 11.66 1.848 a ROS Statistics u data set has > 50% I ts is small such as ROS method may y especially true wher TVs and UCLs may 0.00239 11.7 3.454 0.216 7.193 13.38	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level In Detected Data Only R star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs In the sample size is small. Very be computed using gamma distribution on KM estimates Mean Median CV K star (bias corrected MLE)	0.224 8.253 11.65 1.552 0.01 2.226 0.216 7.172
S% A-D Critical Value K-S Test Statistic S% K-S Critical Value Detected Da R k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when companies of the state of detect for such situations, Ging the state of the	0.889 0.231 0.189 ta Not Gamma Di amma Statistics or 0.224 8.244 11.66 1.848 a ROS Statistics u data set has > 50% f ts is small such as ROS method may y especially true wher TVs and UCLs may 0.00239 11.7 3.454 0.216 7.193 13.38 0.0413	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected MLE) sing Imputed Non-Detects NDs with many tied observations at multiple DLs < 1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs the sample size is small. to be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.224 8.253 11.65 1.552 0.01 2.226 0.216 7.172 13.41
5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Da R k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when kstar of detected when kstar of detected by the situations, Gross may not be used when kstar of detected by the situations, Gross may not be used when kstar of detected by the situations, Gross may not be used when kstar of detected by the situations, Gross may not be used when kstar of detected by the situations of the situation of the si	0.889 0.231 0.189 ta Not Gamma Di amma Statistics or 0.224 8.244 11.66 1.848 a ROS Statistics u data set has > 50% I ts is small such as ROS method may y especially true wher TVs and UCLs may 0.00239 11.7 3.454 0.216 7.193 13.38	Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected)	

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

Estimate	es of Gamma Par	ameters using KM Estimates	
Mean (KM)	1.551	SD (KM)	3.398
Variance (KM)	11.55	SE of Mean (KM)	0.622
k hat (KM)	0.208	k star (KM)	0.21
nu hat (KM)	12.91	nu star (KM)	13
theta hat (KM)	7.445	theta star (KM)	7.397
80% gamma percentile (KM)	2.093	90% gamma percentile (KM)	4.69
95% gamma percentile (KM)	7.892	99% gamma percentile (KM)	16.64
	Gamma Kaplan-N	Neier (KM) Statistics	
Approximate Chi Square Value (13.00, α)	5.891	Adjusted Chi Square Value (13.00, β)	5.626
95% Gamma Approximate KM-UCL (use when n>=50)	3.422	95% Gamma Adjusted KM-UCL (use when n<50)	3.583
	1	-	
Lognor	mal GOF Test on	Detected Observations Only	
Shapiro Wilk Test Statistic	0.874	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.92	Detected Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.17	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.17	Detected Data appear Lognormal at 5% Significance Level	
Detected Data	appear Approxim	ate Lognormal at 5% Significance Level	
Lognon	mai ROS Statistic	s Using Imputed Non-Detects	
Mean in Original Scale	1.551	Mean in Log Scale	-3.054
SD in Original Scale	3.454	SD in Log Scale	2.974
95% t UCL (assumes normality of ROS data)	2.604	95% Percentile Bootstrap UCL	2.651
95% BCA Bootstrap UCL	2.832	95% Bootstrap t UCL	3.34
95% H-UCL (Log ROS)	71.78		
		ed Data and Assuming Lognormal Distribution	
KM Mean (logged)	-3.103	KM Geo Mean	0.0449
KM SD (logged)	2.971	95% Critical H Value (KM-Log)	5.34
KM Standard Error of Mean (logged)	0.545	95% H-UCL (KM -Log)	67.03
KM SD (logged)	2.971	95% Critical H Value (KM-Log)	5.34
KM Standard Error of Mean (logged)	0.545		
	DI /0 O	ia tistics	
DL/2 Normal	DL/2 S	DL/2 Log-Transformed	
Mean in Original Scale	1.551	Mean in Log Scale	-3.102
SD in Original Scale	3.454	SD in Log Scale	3.015
95% t UCL (Assumes normality)	2.604	95% H-Stat UCL	83.32
, , , , , , , , , , , , , , , , , , , ,		rovided for comparisons and historical reasons	
	ondoa moaroa, p	novidod for companisons and mobilical roasons	
None	parametric Distrib	oution Free UCL Statistics	
		ognormal Distributed at 5% Significance Level	-
	••	<u> </u>	
	Suggested	UCL to Use	
99% KM (Chebyshev) UCL	7.743		
, , ,			
Note: Suggestions regarding the selection of	a 95% UCL are pro	ovided to help the user to select the most appropriate 95% UCL.	
Recommendations	are based upon data	a size, data distribution, and skewness.	
These recommendations are based upon th	e results of the sim	ulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all	Real World data se	ts; for additional insight the user may want to consult a statistician.	

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

ENZO(B)FLUORANTHENE			
	General Stat	istics	
Total Number of Observations	31	Number of Distinct Observations	3
Number of Detects	29	Number of Non-Detects	
Number of Distinct Detects	29	Number of Distinct Non-Detects	:
Minimum Detect	0.00244	Minimum Non-Detect	0.0072
Maximum Detect	14.8	Maximum Non-Detect	0.0074
Variance Detects	17.21	Percent Non-Detects	6.452%
Mean Detects	1.901	SD Detects	4.14
Median Detects	0.0169	CV Detects	2.18
Skewness Detects	2.261	Kurtosis Detects	3.97
Mean of Logged Detects	-2.843	SD of Logged Detects	3.06
'	l		
No Shapiro Wilk Test Statistic	rmal GOF Test on 0.525	Detects Only Shapiro Wilk GOF Test	
•		-	
5% Shapiro Wilk Critical Value	0.926	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.433	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.161	Detected Data Not Normal at 5% Significance Level	
Detected	Data Not Normal a	at 5% Significance Level	
Kaplan-Meier (KM) Statistics	using Normal Cri	itical Values and other Nonparametric UCLs	
KM Mean	1.779	KM Standard Error of Mean	0.726
KM SD	3.97	95% KM (BCA) UCL	3.104
95% KM (t) UCL	3.011	95% KM (Percentile Bootstrap) UCL	3.05
95% KM (z) UCL	2.973	95% KM Bootstrap t UCL	3.669
90% KM Chebyshev UCL	3.956	95% KM Chebyshev UCL	4.942
97.5% KM Chebyshev UCL	6.311	99% KM Chebyshev UCL	9
		cted Observations Only	
A-D Test Statistic	2.537	Anderson-Darling GOF Test	
5% A-D Critical Value	0.898	Detected Data Not Gamma Distributed at 5% Significance Le	evel
K-S Test Statistic	0.225		
		Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.18	Detected Data Not Gamma Distributed at 5% Significance Le	evel
		<u> </u>	evel
Detected Data N		Detected Data Not Gamma Distributed at 5% Significance Level	evel
Detected Data N	lot Gamma Distrib	Detected Data Not Gamma Distributed at 5% Significance Level outed at 5% Significance Level otected Data Only	
Detected Data N Gamm k hat (MLE)	na Statistics on De	Detected Data Not Gamma Distributed at 5% Significance Level outed at 5% Significance Level otected Data Only k star (bias corrected MLE)	0.21
Detected Data N Gamm k hat (MLE) Theta hat (MLE)	na Statistics on De 0.21 9.07	Detected Data Not Gamma Distributed at 5% Significance Level puted at 5% Significance Level etected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	0.21 ⁻ 9.014
Detected Data N Gamm k hat (MLE)	na Statistics on De	Detected Data Not Gamma Distributed at 5% Significance Level outed at 5% Significance Level otected Data Only k star (bias corrected MLE)	0.21 ⁻ 9.014
Camn k hat (MLE) Theta hat (MLE) nu hat (MLE)	na Statistics on De 0.21 9.07 12.16	Detected Data Not Gamma Distributed at 5% Significance Level puted at 5% Significance Level etected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	0.21 ⁻ 9.014
Gamma R	na Statistics on De 0.21 9.07 12.16 1.901 OS Statistics using	Detected Data Not Gamma Distributed at 5% Significance Level Detected Data Only Restricted Data Only Restricted Data Only Restricted Data Only In user (bias corrected MLE) In user (bias corrected) In user (bias corrected) In user (bias corrected)	0.21 ⁻ 9.014
Camma R Gamma R Gamma R Gamma R Gamma R GROS may not be used when data	0.21	Detected Data Not Gamma Distributed at 5% Significance Level Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs	0.211 9.014 12.23
Gamma R GROS may not be used when kstar of detects is	0.21 9.07 12.16 1.901 000 Statistics using set has > 50% NDs small such as < 1.0	Detected Data Not Gamma Distributed at 5% Significance Level Data Significance Level Reference Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) In usual (bias corrected)	0.21 ⁻ 9.014
Gamm k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS	na Statistics on De 0.21 9.07 12.16 1.901 OS Statistics using set has > 50% NDs small such as <1.0 G method may yield	Detected Data Not Gamma Distributed at 5% Significance Level State of Data Only Respected D	0.211 9.014
Gamma R Gamma R K hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe	na Statistics on De 0.21 9.07 12.16 1.901 OS Statistics using set has > 50% NDs small such as <1.0 S method may yield cially true when the	Detected Data Not Gamma Distributed at 5% Significance Level State of Data Conty Respected Data Conty Respe	0.21 ⁻ 9.014
Gamma R K hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe	na Statistics on De 0.21 9.07 12.16 1.901 OS Statistics using set has > 50% NDs small such as <1.0 6 method may yield cially true when the and UCLs may be of an UCLs may	Detected Data Not Gamma Distributed at 5% Significance Level Detected Data Conly Restricted Data Conly Restrict	0.21 ⁻ 9.01 ² 12.23
Gamma R k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum	na Statistics on De 0.21 9.07 12.16 1.901 OS Statistics using set has > 50% NDs small such as <1.0 6 method may yield cially true when the and UCLs may be 0.00244	Detected Data Not Gamma Distributed at 5% Significance Level Detected Data Conly Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs o, especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean	0.21 ⁻ 9.01 ² 12.23 1.778
Gamma R k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum	na Statistics on De 0.21 9.07 12.16 1.901 OS Statistics using set has > 50% NDs small such as <1.0 6 method may yield cially true when the and UCLs may be 0.00244 14.8	Detected Data Not Gamma Distributed at 5% Significance Level Potected Data Conly Research (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) purputed Non-Detects with many tied observations at multiple DLs pospecially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median	0.21 9.01 12.23 1.779 0.010
Gamma R k hat (MLE) Theta hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum SD	na Statistics on De 0.21 9.07 12.16 1.901 OS Statistics using set has > 50% NDs small such as <1.0 method may yield cially true when the and UCLs may be 0.00244 14.8 4.036	Detected Data Not Gamma Distributed at 5% Significance Level Potected Data Conly Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs Despecially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. Computed using gamma distribution on KM estimates Mean Median CV	0.21 9.01- 12.23 1.77- 0.010 2.26
Gamma R k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum	na Statistics on De 0.21 9.07 12.16 1.901 OS Statistics using set has > 50% NDs small such as <1.0 6 method may yield cially true when the and UCLs may be 0.00244 14.8	Detected Data Not Gamma Distributed at 5% Significance Level Potected Data Conly Research (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) purputed Non-Detects with many tied observations at multiple DLs pospecially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median	0.21 9.01- 12.2: 1.77- 0.010 2.26 0.20
Gamma R k hat (MLE) Theta hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum SD	na Statistics on De 0.21 9.07 12.16 1.901 OS Statistics using set has > 50% NDs small such as <1.0 method may yield cially true when the and UCLs may be 0.00244 14.8 4.036	Detected Data Not Gamma Distributed at 5% Significance Level Potected Data Conly Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs Despecially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. Computed using gamma distribution on KM estimates Mean Median CV	0.21 9.01- 12.2: 1.779 0.010 2.26 0.20 8.52
Gamma R hat (MLE) Theta hat (MLE) Theta hat (MLE) Nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum SD k hat (MLE)	0.21 9.07 12.16 1.901 OS Statistics using set has > 50% NDs small such as <1.0 method may yield cially true when the and UCLs may be of 0.00244 14.8 4.036 0.207 8.588 12.84	Detected Data Not Gamma Distributed at 5% Significance Level Potected Data Conly Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) In provided Non-Detects With many tied observations at multiple DLs Despecially when the sample size is small (e.g., <15-20) Discorrect values of UCLs and BTVs Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despecially when the sample size is small (e.g., <16-20) Despeci	0.21 9.01- 12.2: 1.779 0.010 2.26 0.20 8.52
Gamma R k hat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE) The mu hat (MLE) Mean (detects) Gamma R GROS may not be used when data: GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum SD k hat (MLE) Theta hat (MLE)	na Statistics on De 0.21 9.07 12.16 1.901 OS Statistics using set has > 50% NDs small such as <1.0 S method may yield cially true when the and UCLs may be of 0.00244 14.8 4.036 0.207 8.588	Detected Data Not Gamma Distributed at 5% Significance Level Detected Data Conly Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Display to the star (bias corrected MLE) nu star (bias corrected) Display to the star (bias corrected MLE) nu star (bias corrected) Display to the star (bias corrected MLE) Display to the star (bias corrected MLE) Theta star (bias corrected MLE)	0.21 ⁻ 9.014 12.23 1.779 0.0102 2.266 0.205 8.528
Gamma R k hat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE) The mu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.21 9.07 12.16 1.901 OS Statistics using set has > 50% NDs small such as <1.0 method may yield cially true when the and UCLs may be of 0.00244 14.8 4.036 0.207 8.588 12.84	Detected Data Not Gamma Distributed at 5% Significance Level Detected Data Conly Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Display to the star (bias corrected MLE) nu star (bias corrected) Display to the star (bias corrected MLE) nu star (bias corrected) Display to the star (bias corrected MLE) Display to the star (bias corrected MLE) Theta star (bias corrected MLE)	0.211 9.014

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

Estimate	s of Gamma Par	ameters using KM Estimates	
Mean (KM)	1.779	SD (KM)	3.97
Variance (KM)	15.76	SE of Mean (KM)	0.726
k hat (KM)	0.201	k star (KM)	0.203
nu hat (KM)	12.44	nu star (KM)	12.57
theta hat (KM)	8.862	theta star (KM)	8.771
80% gamma percentile (KM)	2.361	90% gamma percentile (KM)	5.38
95% gamma percentile (KM)	9.132	99% gamma percentile (KM)	19.44
	Gamma Kaplan-N	feier (KM) Statistics	
Approximate Chi Square Value (12.57, α)	5.607	Adjusted Chi Square Value (12.57, β)	5.349
95% Gamma Approximate KM-UCL (use when n>=50)	3.989	95% Gamma Adjusted KM-UCL (use when n<50)	4.181
	ı.	-	
Lognor	mal GOF Test on	Detected Observations Only	
Shapiro Wilk Test Statistic	0.854	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.926	Detected Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.198	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.161	Detected Data Not Lognormal at 5% Significance Level	
Detecte	d Data Not Logno	ormal at 5% Significance Level	
Lognon	mal ROS Statistics	Using Imputed Non-Detects	
Mean in Original Scale	1.779	Mean in Log Scale	-3.005
SD in Original Scale	4.036	SD in Log Scale	3.029
95% t UCL (assumes normality of ROS data)	3.009	95% Percentile Bootstrap UCL	2.992
95% BCA Bootstrap UCL	3.408	95% Bootstrap t UCL	3.675
95% H-UCL (Log ROS)	98.44		
		ed Data and Assuming Lognormal Distribution	
KM Mean (logged)	-3.024	KM Geo Mean	0.0486
KM SD (logged)	2.997	95% Critical H Value (KM-Log)	5.383
KM Standard Error of Mean (logged)	0.548	95% H-UCL (KM -Log)	82.53
KM SD (logged)	2.997	95% Critical H Value (KM-Log)	5.383
KM Standard Error of Mean (logged)	0.548		
	DL/2 S	and all an	
DL/2 Normal	DL/2 S		
	1.779	DL/2 Log-Transformed Mean in Log Scale	-3.021
Mean in Original Scale SD in Original Scale	4.036	SD in Log Scale	3.043
95% t UCL (Assumes normality)	3.009	95% H-Stat UCL	103.6
, , , , , , , , , , , , , , , , , , , ,		rovided for comparisons and historical reasons	100.0
	onaoa moaroa, p	TOTAGG TOT COMPANISONS AND MISSINGEN TO ASSOCIA	
None	parametric Distrib	ution Free UCL Statistics	
		e Distribution at 5% Significance Level	
	Suggested	UCL to Use	
99% KM (Chebyshev) UCL	9		
, , ,			
Note: Suggestions regarding the selection of	a 95% UCL are pro	wided to help the user to select the most appropriate 95% UCL.	
Recommendations	are based upon data	a size, data distribution, and skewness.	
These recommendations are based upon th	e results of the sim	ulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all	Real World data se	ts; for additional insight the user may want to consult a statistician.	

Lower Main Meadow Pogonip Open Space 501 Golf Club Drive, Santa Cruz, California

ALL DEED A FAIR			
à,H,I)PERYLENE			
Ge	eneral Sta	atistics	
Total Number of Observations	31	Number of Distinct Observations	3
Number of Detects	25	Number of Non-Detects	
Number of Distinct Detects	25	Number of Distinct Non-Detects	
Minimum Detect 0.	.00215	Minimum Non-Detect	0.0064
Maximum Detect	7.52	Maximum Non-Detect	0.0074
Variance Detects	3.783	Percent Non-Detects	19.35%
Mean Detects	0.995	SD Detects	1.94
	0.0751	CV Detects	1.95
Skewness Detects	2.247	Kurtosis Detects	4.72
Mean of Logged Detects	-2.743	SD of Logged Detects	2.80
Normal G	OF Test o	on Detects Only	
Shapiro Wilk Test Statistic	0.591	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.918	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.387	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.173	Detected Data Not Normal at 5% Significance Level	
Detected Data No	ot Normal	l at 5% Significance Level	
Kaplan-Meler (KM) Statistics using	Normal C	Critical Values and other Nonparametric UCLs	
KM Mean	0.803	KM Standard Error of Mean	0.32
KM SD	1.756	95% KM (BCA) UCL	1.36
95% KM (t) UCL	1.349	95% KM (Percentile Bootstrap) UCL	1.34
95% KM (z) UCL	1.332	95% KM Bootstrap t UCL	1.71
90% KM Chebyshev UCL	1.768	95% KM Chebyshev UCL	2.20
· · · · · · · · · · · · · · · · · · ·		,	
97.5% KM Chebyshev UCL	2.813	99% KM Chebyshev UCL	4.00
97.5% KM Chebyshev UCL	2.813	99% KM Chebyshev UCL	4.00
Gamma GOF Test	ts on Dete	ected Observations Only	4.00
Gamma GOF Test A-D Test Statistic	ts on Dete	ected Observations Only Anderson-Darling GOF Test	
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value	1.504 0.872	ected Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I	
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	1.504 0.872 0.188	ected Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF	Level
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	1.504 0.872 0.188 0.191	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance	Level
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	1.504 0.872 0.188 0.191	ected Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF	Level
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr.	1.504 0.872 0.188 0.191 Gamma I	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance	Level
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr.	1.504 0.872 0.188 0.191 Gamma I	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level	Level
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati	1.504 0.872 0.188 0.191 Gamma I	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level	Level e Level
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE)	1.504 0.872 0.188 0.191 Gamma I	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only k star (bias corrected MLE)	Level Description
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE) Theta hat (MLE)	ts on Dete 1.504 0.872 0.188 0.191 Gamma I stics on D 0.258 3.854	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	Level Description
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	1.504 0.872 0.188 0.191 Gamma I 0.258 3.854 12.9 0.995	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	Level Description
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS Stati	ts on Dets 1.504 0.872 0.188 0.191 Gamma I 0.258 3.854 12.9 0.995	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	Level De Level 0.25
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS Stati	ts on Dete 1.504 0.872 0.188 0.191 Gamma I 0.258 3.854 12.9 0.995 15tics usin > 50% ND	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) and star (bias corrected) mg Imputed Non-Detects Distribution at 5% Significance Level	Level Description
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS Stati	ts on Dete 1.504 0.872 0.188 0.191 Gamma I 0.258 3.854 12.9 0.995 tistics usin > 50% ND such as <1.	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	Level Description
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS Stati GROS may not be used when data set has a GROS may not be used when kstar of detects is small set.	ts on Deta 1.504 0.872 0.188 0.191 Gamma I stics on D 0.258 3.854 12.9 0.995 tistics usin > 50% ND such as <1. d may yield	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) significance Level Detected Data Only Restar (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) nu star (bias corrected)	Level Description
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gemma ROS Stati GROS may not be used when data set has a GROS may not be used when kstar of detects is small set of such situations, GROS methoon. This is especially tro	ts on Deta 1.504 0.872 0.188 0.191 Gamma I stics on D 0.258 3.854 12.9 0.995 tistics usin > 50% ND such as <1. d may yield ue when the	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) on ustar (bias corrected) so with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) Id incorrect values of UCLs and BTVs	Level De Level 0.25
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS Stati GROS may not be used when data set has a GROS may not be used when kstar of detects is small s For such situations, GROS metho This is especially tru For gamma distributed detected data, BTVs and UC	ts on Deta 1.504 0.872 0.188 0.191 Gamma I stics on D 0.258 3.854 12.9 0.995 tistics usin > 50% ND such as <1. d may yield ue when the	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) so with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) Id incorrect values of UCLs and BTVs the sample size is small.	Level 0.25 3.91 12.6
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma ROS Stati GROS may not be used when data set has a GROS may not be used when kstar of detects is small s For such situations, GROS metho This is especially tru For gamma distributed detected data, BTVs and UC	1.504 1.504 0.872 0.188 0.191 Gamma I stics on D 0.258 3.854 12.9 0.995 tistics usin > 50% ND: such as <1. d may yield ue when the	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) on star (bias corrected) lo, especially when the sample size is small (e.g., <15-20) Id incorrect values of UCLs and BTVs the sample size is small. e computed using gamma distribution on KM estimates	0.25 3.91 12.6
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data set has: GROS may not be used when kstar of detects is small set of set of the set o	1.504 0.872 0.188 0.191 Gamma I stics on D 0.258 3.854 12.9 0.995 stistics usin > 50% ND such as <1. d may yield ue when the CLs may be 0.00215	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) on star (bias corrected) lo, especially when the sample size is small (e.g., <15-20) Id incorrect values of UCLs and BTVs ne sample size is small. e computed using gamma distribution on KM estimates Mean	0.25 3.91 12.6
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data set has a GROS may not be used when kstar of detects is small set of such situations, GROS methon This is especially true For gamma distributed detected data, BTVs and UCC Minimum 0. Maximum	ts on Deta 1.504 0.872 0.188 0.191 Gamma I Sistics on D 0.258 3.854 12.9 0.995 such as <1. d may yield use when the CLs may be 0.00215 7.52	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) so with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) Id incorrect values of UCLs and BTVs the sample size is small. the computed using gamma distribution on KM estimates Mean Median	0.25 3.91 12.6
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data set has a GROS may not be used when kstar of detects is small set for such situations, GROS methon This is especially tru For gamma distributed detected data, BTVs and UC Minimum 0. Maximum SD	ts on Deta 1.504 0.872 0.188 0.191 Gamma I Sistics on D 0.258 3.854 12.9 0.995 such as <1. d may yield use when the CLs may be county be county be county be county be county.	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) and Imputed Non-Detects Distribution at 5% Significance Level Detected Data Only Restar (bias corrected MLE) nu star (bias corrected) Indicate (bias corrected) Detected Data Only Restar (bias corrected MLE) nu star (bias corrected) Indicate (bias corrected) Detected Data Only Restar (bias corrected MLE) nu star (bias corrected) Indicate (bias corrected) Restar (bias corrected) Net (bias corrected) Restar (bias corrected) Restar (bias corrected) Net (bias corrected) Restar (bias	0.25 3.91 12.6 0.80 0.0 2.21
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data set has a GROS may not be used when data set has set of detects is small set of set of the set o	ts on Deta 1.504 0.872 0.188 0.191 Gamma I 0.258 3.854 12.9 0.995 1550% ND: such as <1. d may yield use when the CLs may be 0.00215 7.52 1.784 0.247	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) In ustar (bias corrected)	0.25 3.91 12.6 0.80 0.0 2.21 0.24
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data set has a GROS may not be used when data set has set has set of detects is small set of set of the set of t	ts on Dete 1.504 0.872 0.188 0.191 Gamma I 0.258 3.854 12.9 0.995 12.9 0.995 such as <1. d may yield use when the CLs may be 0.00215 7.52 1.784 0.247 3.26	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) In star (bias corrected MLE) Theta star (bias corrected MLE)	0.25 3.91 12.6 0.80 0.0 2.21 0.24
Gamma GOF Test A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data follow Appr. Gamma Stati k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when data set has a GROS may not be used when data set has a GROS may not be used when kstar of detects is small a For such situations, GROS method This is especially true For gamma distributed detected data, BTVs and UC Minimum O. Maximum SD k hat (MLE) Theta hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β)	ts on Deta 1.504 0.872 0.188 0.191 Gamma I Stics on D 0.258 3.854 12.9 0.995 12.9 0.995 14stics usin > 50% ND such as <1. d may yield ue when the CLs may be 0.00215 7.52 1.784 0.247 3.26 15.29	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distribution at 5% Significance Level Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) In star (bias corrected MLE) Theta star (bias corrected MLE)	Level E Level 0.25

$\label{eq:prouch} \textbf{ProUCL Output for Polycyclic Aromatic Hydrocarbons (PAHs) in Soil}$

Estimat	es of Gamma Par	ameters using KM Estimates	
Mean (KM)	0.803	SD (KM)	1.756
Variance (KM)	3.082	SE of Mean (KM)	0.322
k hat (KM)	0.209	k star (KM)	0.21
nu hat (KM)	12.97	nu star (KM)	13.05
theta hat (KM)	3.839	theta star (KM)	3.816
80% gamma percentile (KM)	1.085	90% gamma percentile (KM)	2.428
95% gamma percentile (KM)	4.082	99% gamma percentile (KM)	8.598
		-	
	Gamma Kaplan-N	Meler (KM) Statistics	
Approximate Chi Square Value (13.05, α)	5.924	Adjusted Chi Square Value (13.05, β)	5.658
95% Gamma Approximate KM-UCL (use when n>=50)	1.768	95% Gamma Adjusted KM-UCL (use when n<50)	1.851
		<u>.</u>	
Logno	rmal GOF Test on	Detected Observations Only	
Shapiro Wilk Test Statistic	0.891	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.918	Detected Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.194	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.173	Detected Data Not Lognormal at 5% Significance Level	
Detecte	d Data Not Logn	ormal at 5% Significance Level	
Lognor	mal ROS Statistic	s Using Imputed Non-Detects	
Mean in Original Scale	0.803	Mean in Log Scale	-3.222
SD in Original Scale	1.784	SD in Log Scale	2.697
95% t UCL (assumes normality of ROS data)	1.347	95% Percentile Bootstrap UCL	1.372
95% BCA Bootstrap UCL	1.529	95% Bootstrap t UCL	1.693
95% H-UCL (Log ROS)	16.89		
Statistics using KM es	stimates on Logg	ed Data and Assuming Lognormal Distribution	
KM Mean (logged)	-3.296	KM Geo Mean	0.037
KM SD (logged)	2.717	95% Critical H Value (KM-Log)	4.933
KM Standard Error of Mean (logged)	0.5	95% H-UCL (KM -Log)	17.16
KM SD (logged)	2.717	95% Critical H Value (KM-Log)	4.933
KM Standard Error of Mean (logged)	0.5		
DI Ø Normal	DL/2 S		
DL/2 Normal	0.803	DL/2 Log-Transformed	2 207
Mean in Original Scale		Mean in Log Scale	-3.307 2.767
SD in Original Scale 95% t UCL (Assumes normality)	1.765	SD in Log Scale 95% H-Stat UCL	21.14
, , , ,	_	provided for comparisons and historical reasons	21.14
DEZ ISTICTA TOCOTION	ienaea mealoa, p	novided for companisons and measured reasons	
Non	narametric Distrib	oution Free UCL Statistics	
	•	Gamma Distributed at 5% Significance Level	
333332321 др			
	Suggested	UCL to Use	
Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but			
k<=1)			
	<u> </u>		
When a data set follows an	approximate (e.g., r	ormal) distribution passing one of the GOF test	
		distribution (e.g., gamma) passing both GOF tests in ProUCL	
	•		
Note: Suggestions regarding the selection of	a 95% UCL are pro	ovided to help the user to select the most appropriate 95% UCL.	
Recommendations	are based upon data	a size, data distribution, and skewness.	
These recommendations are based upon the	ne results of the sim	ulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all	Real World data se	ts; for additional insight the user may want to consult a statistician.	
L			

(K)FLUORANTHENE			
	General Sta	atietice	
Total Number of Observations	31	Number of Distinct Observations	
Number of Detects	18	Number of Non-Detects	
Number of Distinct Detects	18	Number of Distinct Non-Detects	
Minimum Detect	0.00264	Minimum Non-Detect	0.006
Maximum Detect	4.02	Maximum Non-Detect	0.00
Variance Detects	1.922	Percent Non-Detects	41.9
Mean Detects	0.852	SD Detects	1.
Median Detects	0.0815	CV Detects	1.
Skewness Detects	1.617	Kurtosis Detects	1.
Mean of Logged Detects	-2.228	SD of Logged Detects	2
Wealton Logged Detects	-2.220	OD OI LOGGED DELECTS	
	Normal GOF Test o		
Shapiro Wilk Test Statistic	0.662	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.897	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.367	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.202	Detected Data Not Normal at 5% Significance Level	
Detecte	d Data Not Normal	l at 5% Significance Level	
Kaplan-Meler (KM) Statis	tics using Normal C	Critical Values and other Nonparametric UCLs	
KM Mean	0.496	KM Standard Error of Mean	0
KM SD	1.109	95% KM (BCA) UCL	0
95% KM (t) UCL	0.844	95% KM (Percentile Bootstrap) UCL	0
95% KM (z) UCL	0.833	95% KM Bootstrap t UCL	1
90% KM Chebyshev UCL	1.111	95% KM Chebyshev UCL	1
97.5% KM Chebyshev UCL	1.776	99% KM Chebyshev UCL	2
		· ·	
Gamma	GOF Tests on Dete	acted Observations Only	
Gamma A-D Test Statistic	GOF Tests on Dete	ected Observations Only Anderson-Darling GOF Test	
		<u>-</u>	el
A-D Test Statistic	0.881	Anderson-Darling GOF Test	el
A-D Test Statistic 5% A-D Critical Value	0.881 0.836	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev	
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.881 0.836 0.26 0.22	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov GOF	
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat	0.881 0.836 0.26 0.22 a Not Gamma Distri	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev- Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev- ributed at 5% Significance Level	
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat	0.881 0.836 0.26 0.22 a Not Gamma Distr	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev Kolmogorov-Smlrnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev ributed at 5% Significance Level Detected Data Only	el
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE)	0.881 0.836 0.26 0.22 a Not Gamma Distrimma Statistics on D 0.329	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev- Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev- ributed at 5% Significance Level Detected Data Only k star (bias corrected MLE)	el 0
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE)	0.881 0.836 0.26 0.22 a Not Gamma Distrimma Statistics on D 0.329 2.593	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev ributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	el 0
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE)	0.881 0.836 0.26 0.22 a Not Gamma Distrimma Statistics on D 0.329	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev- Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev- ributed at 5% Significance Level Detected Data Only k star (bias corrected MLE)	el 0
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	0.881 0.836 0.26 0.22 a Not Gamma Distri mma Statistics on D 0.329 2.593 11.83 0.852	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev- Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev- ributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	el 0
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	0.881 0.836 0.26 0.22 a Not Gamma Distrima Statistics on D 0.329 2.593 11.83 0.852	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev- Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev- ributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected)	el 0
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when dat	0.881 0.836 0.26 0.22 a Not Gamma Distrima Statistics on D 0.329 2.593 11.83 0.852 a ROS Statistics using the state of the	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev. Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Level Detected Data Not Gamma Distributed at 5% Significance Level Detected Data Cnly k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) ng imputed Non-Detects Detected Data Won-Detects Detected Data Cnly	el 0
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Gate Mana (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamme GROS may not be used when kstar of detects	0.881 0.836 0.26 0.22 a Not Gamma Distribution Distributi	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev. Kolmogorov-Smlrnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev. ributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) so with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20)	el 0
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamme GROS may not be used when dat GROS may not be used when kstar of detects For such situations, GR	0.881 0.836 0.26 0.22 a Not Gamma Distriction District	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev. Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev. Potected Data Not Gamma Distributed at 5% Significance Lev. Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) so with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) Id incorrect values of UCLs and BTVs	el 0
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamme GROS may not be used when dat GROS may not be used when kstar of detects For such situations, GF This is es	0.881 0.836 0.26 0.22 a Not Gamma Distriction District	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev. Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev. Potected Data Not Gamma Distributed at 5% Significance Lev. Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) so with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) Id incorrect values of UCLs and BTVs ne sample size is small.	el 0
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamme GROS may not be used when de GROS may not be used when kstar of detect For such situations, GF This is ee For gamma distributed detected data, BT	0.881 0.836 0.26 0.22 a Not Gamma Distriction District	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev ributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) nu star (bias corrected) log imputed Non-Detects Dos with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) Id incorrect values of UCLs and BTVs ne sample size is small. e computed using gamma distribution on KM estimates	0 :
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when dat GROS may not be used when kstar of detect For such situations, GF This is ee For gamma distributed detected data, BT Minimum	0.881 0.836 0.26 0.22 a Not Gamma Distrima Statistics on D 0.329 2.593 11.83 0.852 a ROS Statistics using atta set has > 50% ND is is small such as <1 ROS method may yield specially true when the Vs and UCLs may be 0.00264	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev ributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) nu star (bias corrected) so with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) Id incorrect values of UCLs and BTVs ne sample size is small. e computed using gamma distribution on KM estimates Mean	0 1
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when dat GROS may not be used when kstar of detect For such situations, GF This is set For gamma distributed detected data, BT Minimum Maximum	0.881 0.836 0.26 0.22 a Not Gamma Distrima Statistics on D 0.329 2.593 11.83 0.852 a ROS Statistics using at a set has > 50% ND is is small such as <1 ROS method may yield specially true when the Vs and UCLs may be 0.00264 4.02	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev Kolmogorov-Smlrnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev ributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) nu star (bias corrected) lo, sepecially when the sample size is small (e.g., <15-20) Id incorrect values of UCLs and BTVs ne sample size is small. e computed using gamma distribution on KM estimates Mean Median	0 : 1
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Genme GROS may not be used when de GROS may not be used when de For such situations, GF This is ee For gamma distributed detected data, BT Minimum Maximum SD	0.881 0.836 0.26 0.22 a Not Gamma Distrima Statistics on D 0.329 2.593 11.83 0.852 a ROS Statistics using at a set has > 50% ND is is small such as <1 ROS method may yiel specially true when the Vs and UCLs may be 0.00264 4.02 1.126	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev ributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) nu star (bias corrected) ld incorrect values of UCLs and BTVs ne sample size is small. e computed using gamma distribution on KM estimates Mean Median CV	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when dated when dated when detected the statistics of the st	0.881 0.836 0.26 0.22 2 Not Gamma Distriction District	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev- Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev- ributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) In gimputed Non-Detects So with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) Ind incorrect values of UCLs and BTVs the sample size is small. the computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when detected when detected when detected between the state of detects For such situations, GF This is est For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE) Theta hat (MLE)	0.881 0.836 0.26 0.22 2 Not Gamma Distriction District	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev- Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev- ributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) In gimputed Non-Detects Dos with many tied observations at multiple DLs In generally when the sample size is small (e.g., <15-20) In gample size is small. In general gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE)	0 1 1 0 0
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Read (MLE) Theta hat (MLE) Theta hat (MLE) Mean (detects) GROS may not be used when dated when dated when detects For such situations, GF This is ear For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE)	0.881 0.836 0.26 0.22 2 Not Gamma Distriction District	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev- Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev- ributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) In gimputed Non-Detects So with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) Ind incorrect values of UCLs and BTVs the sample size is small. the computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when dat GROS may not be used when dat GROS may not be used when kstar of detect For such situations, GF This is est For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE) Theta hat (MLE) Theta hat (MLE) Adjusted Level of Significance (β)	0.881 0.836 0.26 0.22 2 Not Gamma Distriction District	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev. Kolmogorov-Smlrnov GOF Detected Data Not Gamma Distributed at 5% Significance Level Detected Data Not Gamma Distributed at 5% Significance Level Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) In ustar (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected)	0 1 1 2 0
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Read (MLE) Theta hat (MLE) Theta hat (MLE) Mean (detects) GROS may not be used when dated when dated when detects For such situations, GF This is ear For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE)	0.881 0.836 0.26 0.22 2 Not Gamma Distriction District	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lev- Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lev- ributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) nu star (bias corrected) In gimputed Non-Detects Dos with many tied observations at multiple DLs In generally when the sample size is small (e.g., <15-20) In gample size is small. In general gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE)	C 2 2 C

Estimat	es of Gamma Par	ameters using KM Estimates	
Mean (KM)	0.496	SD (KM)	1.109
Variance (KM)	1,229	SE of Mean (KM)	0.205
k hat (KM)	0.2	k star (KM)	0.203
nu hat (KM)	12.43	nu star (KM)	12.56
theta hat (KM)	2.476	theta star (KM)	2.45
80% gamma percentile (KM)	0.658	90% gamma percentile (KM)	1.501
95% gamma percentile (KM)	2.549	99% gamma percentile (KM)	5.427
	Gamma Kaplan-N	Neier (KM) Statistics	
Approximate Chi Square Value (12.56, α)	5.599	Adjusted Chi Square Value (12.56, β)	5.341
95% Gamma Approximate KM-UCL (use when n>=50)	1.114	95% Gamma Adjusted KM-UCL (use when n<50)	1.167
	1	-	
Lognor	rmal GOF Test on	Detected Observations Only	
Shapiro Wilk Test Statistic	0.925	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.897	Detected Data appear Lognormal at 5% Significance Leve	al .
Lilliefors Test Statistic	0.145	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.202	Detected Data appear Lognormal at 5% Significance Leve	el .
Detected	Data appear Log	normal at 5% Significance Level	
Lognor	mal ROS Statistics	s Using Imputed Non-Detects	
Mean in Original Scale	0.496	Mean in Log Scale	-3.614
SD in Original Scale	1.127	SD in Log Scale	2.499
95% t UCL (assumes normality of ROS data)	0.84	95% Percentile Bootstrap UCL	0.848
95% BCA Bootstrap UCL	0.935	95% Bootstrap t UCL	1.017
95% H-UCL (Log ROS)	4.961		
		ed Data and Assuming Lognormal Distribution	
KM Mean (logged)	-3.622	KM Geo Mean	0.0267
KM SD (logged)	2.473	95% Critical H Value (KM-Log)	4.545
KM Standard Error of Mean (logged)	0.463	95% H-UCL (KM -Log)	4.429
KM SD (logged)	2.473 0.463	95% Critical H Value (KM-Log)	4.545
KM Standard Error of Mean (logged)	0.463		
	DL/2 S	tatietice	
DL/2 Normal	DL/2 G	DL/2 Log-Transformed	
Mean in Original Scale	0.496	Mean in Log Scale	-3.667
SD in Original Scale		SD in Log Scale	2.542
95% t UCL (Assumes normality)	0.84	95% H-Stat UCL	5.614
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `		rovided for comparisons and historical reasons	
		•	
Non	parametric Distrib	ution Free UCL Statistics	
Detected Data	appear Lognorn	nal Distributed at 5% Significance Level	
	Suggested	UCL to Use	
97.5% KM (Chebyshev) UCL	1.776		
	<u> </u>	-	
Note: Suggestions regarding the selection of	a 95% UCL are pro	ovided to help the user to select the most appropriate 95% UCL.	
Recommendations	are based upon data	a size, data distribution, and skewness.	
These recommendations are based upon the	e results of the sim	ulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all	Real World data se	ts; for additional insight the user may want to consult a statistician.	

General Sta	atistics	
31	Number of Distinct Observations	3.
21	Number of Non-Detects	10
21	Number of Distinct Non-Detects	10
0.00297	Minimum Non-Detect	0.00644
9.86	Maximum Non-Detect	0.00752
10.52	Percent Non-Detects	32.26%
1.916	SD Detects	3.24
0.172	CV Detects	1.693
1.561	Kurtosis Detects	1.04
-1.953	SD of Logged Detects	2.857
0.908		
Data Not Normal	at 5% Significance Level	
	·	
		0.507
	` '	2.238
	, ,,,	2.179
	· · · · · · · · · · · · · · · · · · ·	2.681
	-	3.509
4.465	99% KM Chebyshev UCL	6.342
OF T D	and Observations Only	
		1
		evei
	<u> </u>	
		evei
Not Gamma Distri	ibued 813% Signilicance Level	
ma Statistica en D	Oats ated Date Only	
		0.263
	, ,	7.29
	, ,	11.04
	nu star (blas correcteu)	11.04
1.910		
OS Statistics usin	ng Imputed Non-Detects	
0.00297		1.301
		0.0122
		2.151
0.234	k star (bias corrected MLE)	0.233
	, ,	5.592
5.566	Theta star (bias corrected MLF)	
5.566 14.49	Theta star (bias corrected MLE) nu star (bias corrected)	
14.49		14.42
14.49 0.0413	nu star (bias corrected)	14.42
	21 21 21 21 21 0.00297 9.86 10.52 1.916 0.172 1.561 -1.953 0.008 0.398 0.188 0.398 0.188 0.398 0.188 0.398 0.188 0.398 0.188 0.398 0.188 0.4465 0.229 0.2754 2.159 2.133 2.82 4.465 0.861 0.222 0.207 0.277 11.32 1.916 0.277 11.32 1.916 0.28 Statistics using set has > 50% ND on the second of the se	21 Number of Non-Detects 21 Number of Distinct Non-Detects 0.000297 Minimum Non-Detect 0.000297 Minimum Non-Detect 0.000297 Minimum Non-Detect 0.000297 Meximum Non-Detect 1.052 Percent Non-Detects 1.052 Percent Non-Detects 1.051 SD Detects 1.051 CV Detects 1.051 Kurtosis Detects 1.052 SD of Logged Detects 1.053 SD of Logged Detects 1.056 Shapiro Wilk GOF Test 1.050 Detected Data Not Normal at 5% Significance Level 1.058 Detected Data Not Normal at 5% Significance Level 1.058 Detected Data Not Normal at 5% Significance Level 1.059 KM Standard Error of Mean 1.059 KM Standard Error of Mean 1.059 KM Standard Error of Mean 1.059 Significance Level 1.059 Significance Level 1.050 Significance L

Estimate	s of Gamma Par	ameters using KM Estimates	
Mean (KM)	1.299	SD (KM)	2.754
Variance (KM)	7.586	SE of Mean (KM)	0.507
k hat (KM)	0.222	k star (KM)	0.222
nu hat (KM)	13.79	nu star (KM)	13.79
theta hat (KM)	5.839	theta star (KM)	5.84
80% gamma percentile (KM)	1.802	90% gamma percentile (KM)	3.923
95% gamma percentile (KM)	6.504	99% gamma percentile (KM)	13.49
	Gamma Kaplan-N	Meier (KM) Statistics	
Approximate Chi Square Value (13.79, α)	6.429	Adjusted Chi Square Value (13.79, β)	6.15
95% Gamma Approximate KM-UCL (use when n>=50)	2.787	95% Gamma Adjusted KM-UCL (use when n<50)	2.913
	<u> </u>	-	
Lognor	mal GOF Test on	Detected Observations Only	
Shapiro Wilk Test Statistic	0.911	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.908	Detected Data appear Lognormal at 5% Significance Leve	al .
Lilliefors Test Statistic	0.144	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.188	Detected Data appear Lognormal at 5% Significance Leve	el
Detected	Data appear Log	normal at 5% Significance Level	
Lognori	mal ROS Statistic	s Using Imputed Non-Detects	
Mean in Original Scale	1.299	Mean in Log Scale	-3.095
SD in Original Scale	2.8	SD in Log Scale	2.876
95% t UCL (assumes normality of ROS data)	2.152	95% Percentile Bootstrap UCL	2.174
95% BCA Bootstrap UCL	2.336	95% Bootstrap t UCL	2.563
95% H-UCL (Log ROS)	43.07		
*		ed Data and Assuming Lognormal Distribution	
KM Mean (logged)	-3.089	KM Geo Mean	0.0456
KM SD (logged)	2.828	95% Critical H Value (KM-Log)	5.11
KM Standard Error of Mean (logged)	0.523	95% H-UCL (KM -Log)	34.78
KM SD (logged)	2.828 0.523	95% Critical H Value (KM-Log)	5.11
KM Standard Error of Mean (logged)	0.523		
	DL/2 S	tatietice	
DL/2 Normal	DE/2 0	DL/2 Log-Transformed	
Mean in Original Scale	1.299	Mean in Log Scale	-3.143
SD in Original Scale	2.8	SD in Log Scale	2.918
95% t UCL (Assumes normality)	2.152	95% H-Stat UCL	50.13
DL/2 is not a recomm	ended method, p	rovided for comparisons and historical reasons	
		·	
Nong	parametric Distrib	ution Free UCL Statistics	
Detected Data	appear Lognorn	nal Distributed at 5% Significance Level	
	Suggested	UCL to Use	
97.5% KM (Chebyshev) UCL	4.465		
Note: Suggestions regarding the selection of	a 95% UCL are pro	ovided to help the user to select the most appropriate 95% UCL.	· · · · · · · · · · · · · · · · · · ·
Recommendations	are based upon dat	a size, data distribution, and skewness.	<u> </u>
· · · · · · · · · · · · · · · · · · ·		ulation studies summarized in Singh, Maichle, and Lee (2006).	<u> </u>
However, simulations results will not cover all	Real World data se	ts; for additional insight the user may want to consult a statistician.	

DIBENZ(A,H)ANTHRACENE			
	General S	Statistics	
Total Number of Observations	31	Number of Distinct Observations	3
Number of Detects	15	Number of Non-Detects	16
Number of Distinct Detects	15	Number of Distinct Non-Detects	16
Minimum Detect	0.00377	Minimum Non-Detect	0.00639
Maximum Detect	4.45	Maximum Non-Detect	0.00752
Variance Detects	1.6	Percent Non-Detects	51.61%
Mean Detects	0.707	SD Detects	1.26
Median Detects	0.0661	CV Detects	1.79
Skewness Detects	2.275	Kurtosis Detects	5.1
Mean of Logged Detects	-2.063	SD of Logged Detects	2.082
	N		
Shapiro Wilk Test Statistic	Normal GOF Tes	st on Detects Only Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.881	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.311	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.22	Detected Data Not Normal at 5% Significance Level	
Detecti	-	nal at 5% Significance Level	
Kaplan-Meier (KM) Statis	tics using Normal	l Critical Values and other Nonparametric UCLs	
KM Mean	0.344	KM Standard Error of Mean	0.171
KM SD	0.92	95% KM (BCA) UCL	0.669
95% KM (t) UCL	0.634	95% KM (Percentile Bootstrap) UCL	0.649
95% KM (z) UCL	0.625	95% KM Bootstrap t UCL	1.031
90% KM Chebyshev UCL	0.857	95% KM Chebyshev UCL	1.089
97.5% KM Chebyshev UCL	1,412	99% KM Chebyshev UCL	2.045
57.570 NW Grisbyshev GCL		99 % NW Chebyshev OCL	2.010
,		,	
Gamm	a GOF Tests on De	etected Observations Only	2.0.0
Gamme A-D Test Statistic	a GOF Tests on De	etected Observations Only Anderson-Darling GOF Test	
Gemmi A-D Test Statistic 5% A-D Critical Value	a GOF Tests on De 0.793 0.817	etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance	
Gemmi A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	0.793 0.817 0.232	etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF	e Level
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.793 0.817 0.232 0.237	etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance	e Level
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.793 0.817 0.232 0.237	etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF	e Level
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected date	0.793 0.817 0.232 0.237 0 appear Gamma	etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance	e Level
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected date	0.793 0.817 0.232 0.237 0 appear Gamma	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level	e Level
Gamm A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data	a GOF Tests on Do 0.793 0.817 0.232 0.237 a appear Gamma	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level	e Level E Level 0.353
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected date k hat (MLE)	0.793 0.817 0.232 0.237 0.237 0.238 0.237 0.238 0.238 0.238	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only k star (bias corrected MLE)	e Level e Level 0.353 2.001
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected date k hat (MLE) Theta hat (MLE)	a GOF Tests on D 0.793 0.817 0.232 0.237 a appear Gamma mma Statistics on 0.386 1.832	etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	e Level e Level 0.353 2.001
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data K hat (MLE) Theta hat (MLE) nu hat (MLE)	a GOF Tests on D 0.793 0.817 0.232 0.237 a appear Gamma amma Statistics on 0.386 1.832 11.57	etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	e Level e Level 0.353 2.001
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Gatter of the control	a GOF Tests on D 0.793 0.817 0.232 0.237 a appear Gamma amma Statistics on 0.386 1.832 11.57 0.707	etected Observations Only Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	e Level
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Gate k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma	a GOF Tests on D 0.793 0.817 0.232 0.237 a appear Gamma amma Statistics on 0.386 1.832 11.57 0.707	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	e Level e Level 0.353 2.001
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when detects	a GOF Tests on D 0.793 0.817 0.232 0.237 a appear Gamma amma Statistics on 0.386 1.832 11.57 0.707	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	e Level e Level 0.353 2.001
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Ref (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when star of detect	a GOF Tests on Do	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Distributed at 5% Significance Level A Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs	e Level e Level 0.353 2.001
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Resident (MLE) Theta hat (MLE) Theta hat (MLE) Mean (detects) Gamma GROS may not be used when detects For such situations, Gi	a GOF Tests on Do	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level In Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20)	e Level e Level 0.353 2.001
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when detects For such situations, Gill This is e	a GOF Tests on Do	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level In Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) vield incorrect values of UCLs and BTVs	e Level 0.353 2.001 10.56
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when detects For such situations, Gill This is e	a GOF Tests on D 0.793 0.817 0.232 0.237 a appear Gamma amma Statistics on 0.386 1.832 11.57 0.707 a ROS Statistics use tata set has > 50% N ts is small such as a set of the s	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs the sample size is small. We computed using gamma distribution on KM estimates Mean	0.353 2.001 10.59
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected date Detected date R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when detected date GROS may not be used when kstar of detected for such situations, Girls is each of the such as a second of the such as a for gamma distributed detected data, B' Minimum Maximum	a GOF Tests on D 0.793 0.817 0.232 0.237 a appear Gamma amma Statistics on 0.386 1.832 11.57 0.707 a ROS Statistics us state set has > 50% N ts is small such as ROS method may y specially true when IVs and UCLs may 0.00377 4.45	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level In Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs in the sample size is small. If be computed using gamma distribution on KM estimates Mean Median	0.353 2.001 10.59
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Research Research Research Research Gamma GROS may not be used when defended and the state of detection of the state of	a GOF Tests on D 0.793 0.817 0.232 0.237 a appear Gamma amma Statistics on 0.386 1.832 11.57 0.707 a ROS Statistics use lata set has > 50% N ts is small such as as ROS method may y specially true when IVs and UCLs may 0.00377 4.45 0.934	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level In Detected Data Only A star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) field incorrect values of UCLs and BTVs in the sample size is small. If be computed using gamma distribution on KM estimates Mean Median Median CV	0.353 2.001 10.59 0.347 0.01 2.60
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Reference of the statistic statis	a GOF Tests on D 0.793 0.817 0.232 0.237 a appear Gamma amma Statistics on 0.386 1.832 11.57 0.707 a ROS Statistics us ata set has > 50% N ts is small such as ROS method may y specially true when TVs and UCLs may 0.00377 4.45 0.934 0.298	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only A star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs in the sample size is small. If be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.353 2.00° 10.59 0.347 0.0° 2.66 0.29°
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Reference of the state of the st	a GOF Tests on D 0.793 0.817 0.232 0.237 a appear Gamma amma Statistics on 0.386 1.832 11.57 0.707 a ROS Statistics us at set has > 50% N ts is small such as ROS method may y specially true when TVs and UCLs may 0.00377 4.45 0.934 0.298 1.165	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Distributed at 5% Significance Level A Detected Data Only R star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs At the sample size is small. A be computed using gamma distribution on KM estimates Mean Median CV R star (bias corrected MLE) Theta star (bias corrected MLE)	0.353 2.00° 10.56 0.347 0.0° 2.66 0.29°
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Residual Statistic 5% K-S Critical Value Detected data Residual Statistic Gamma Gamma GROS may not be used when detected with the state of detection of the statistic of the s	a GOF Tests on D 0.793 0.817 0.232 0.237 a appear Gamma amma Statistics on 0.386 1.832 11.57 0.707 a ROS Statistics us at set has > 50% N ts is small such as ROS method may y specially true when IVs and UCLs may 0.00377 4.45 0.934 0.298 1.165 18.47	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Detected Data Only A star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs in the sample size is small. If be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.353 2.00° 10.56 0.347 0.0° 2.66 0.29°
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Residual Statistic S% K-S Critical Value Detected data Residual Statistic Gamma Gamma GROS may not be used when detected with the state of detection of the statistic stati	a GOF Tests on D 0.793 0.817 0.232 0.237 a appear Gamma amma Statistics on 0.386 1.832 11.57 0.707 a ROS Statistics us tata set has > 50% N ts is small such as ROS method may y specially true when IVs and UCLs may 0.00377 4.45 0.934 0.298 1.165 18.47 0.0413	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level In Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs In the sample size is small. The computed using gamma distribution on KM estimates Mean Median CV Restar (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE)	0.353 2.001 10.59 0.347 0.01 2.69 0.291 1.194 18.02
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data Residual Statistic 5% K-S Critical Value Detected data Residual Statistic Gamma Gamma GROS may not be used when detected with the state of detection of the statistic statis	a GOF Tests on D 0.793 0.817 0.232 0.237 a appear Gamma amma Statistics on 0.386 1.832 11.57 0.707 a ROS Statistics us at set has > 50% N ts is small such as ROS method may y specially true when IVs and UCLs may 0.00377 4.45 0.934 0.298 1.165 18.47	Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance Distributed at 5% Significance Level Distributed at 5% Significance Level A Detected Data Only R star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs At the sample size is small. A be computed using gamma distribution on KM estimates Mean Median CV R star (bias corrected MLE) Theta star (bias corrected MLE)	0.353 2.001 10.59 0.347 0.01 2.69 0.291

$\label{eq:prouch} \textbf{ProUCL Output for Polycyclic Aromatic Hydrocarbons (PAHs) in Soil}$

Estimat	es of Gamma Par	ameters using KM Estimates	
Mean (KM)	0.344	SD (KM)	0.92
Variance (KM)	0.846	SE of Mean (KM)	0.171
k hat (KM)	0.14	k star (KM)	0.148
nu hat (KM)	8.667	nu star (KM)	9.161
theta hat (KM)	2.46	theta star (KM)	2.327
80% gamma percentile (KM)	0.37	90% gamma percentile (KM)	1.017
95% gamma percentile (KM)	1.898	99% gamma percentile (KM)	4.461
	l l	1	
	Gamma Kaplan-N	leier (KM) Statistics	
Approximate Chi Square Value (9.16, α)	3.425	Adjusted Chi Square Value (9.16, β)	3.232
95% Gamma Approximate KM-UCL (use when n>=50)	0.92	95% Gamma Adjusted KM-UCL (use when n<50)	0.975
		·	
Logno	rmal GOF Test on	Detected Observations Only	
Shapiro Wilk Test Statistic	0.957	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.881	Detected Data appear Lognormal at 5% Significance Leve	
Lilliefors Test Statistic	0.157	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.22	Detected Data appear Lognormal at 5% Significance Leve	
Detected	Data appear Log	normal at 5% Significance Level	
Lognor	mal ROS Statistics	Using Imputed Non-Detects	
Mean in Original Scale	0.343	Mean in Log Scale	-4.373
SD in Original Scale	0.935	SD in Log Scale	2.682
95% t UCL (assumes normality of ROS data)	0.628	95% Percentile Bootstrap UCL	0.645
95% BCA Bootstrap UCL	0.8	95% Bootstrap t UCL	0.965
95% H-UCL (Log ROS)	5.007		
Statistics using KM es	stimates on Logge	od Data and Assuming Lognormal Distribution	
KM Mean (logged)	-3.879	KM Geo Mean	0.0207
KM SD (logged)	2.247	95% Critical H Value (KM-Log)	4.191
KM Standard Error of Mean (logged)	0.418	95% H-UCL (KM -Log)	1.439
KM SD (logged)	2.247	95% Critical H Value (KM-Log)	4.191
KM Standard Error of Mean (logged)	0.418		
	DL/2 S		
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale		Mean in Log Scale	-3.924
SD in Original Scale		SD in Log Scale	2.319
95% t UCL (Assumes normality)	0.629	95% H-Stat UCL	1.799
DL/Z is not a recomm	юпава твиоа, р	rovided for comparisons and historical reasons	
Non	n a va matria Distrib	ution Free UCL Statistics	
· ·			
Detected Date	а арреат Сапппа	Distributed at 5% Significance Level	
	Suggested	UCL to Use	
Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but			
(use when k<=1 and 15 < n < 50 but k<=1)			
,			
Note: Suggestions regarding the selection of	a 95% LICL are pro	vided to help the user to select the most appropriate 95% UCL.	
	<u>.</u>	a size, data distribution, and skewness.	
		ulation studies summarized in Singh, Maichle, and Lee (2006).	
r nese recommendations are based upon th		andron oracios summanzed in origin, Malchie, and Lee (2000).	
However simulations results will not cover all	Real World data se	ts; for additional insight the user may want to consult a statistician.	

UORANTHENE			
	General Stati	istics	
Total Number of Observations	31	Number of Distinct Observations	3
Number of Detects	21	Number of Non-Detects	1
Number of Distinct Detects	21	Number of Distinct Non-Detects	1
Minimum Detect	0.00273	Minimum Non-Detect	0.0064
Maximum Detect	11.1	Maximum Non-Detect	0.0075
Variance Detects	8.374	Percent Non-Detects	32.269
Mean Detects	1.639	SD Detects	2.89
Median Detects	0.123	CV Detects	1.76
Skewness Detects	2.121	Kurtosis Detects	4.76
Mean of Logged Detects	-2.084	SD of Logged Detects	2.8
	L	<u> </u>	
	ormal GOF Test on	<u> </u>	
Shapiro Wilk Test Statistic	0.639	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.908	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.387	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.188	Detected Data Not Normal at 5% Significance Level	
Detected I	Data Not Normal a	t 5% Significance Level	
Vanian Major (VAI) Statistics	ueina Normal Cri	tical Values and other Nonparametric UCLs	
		<u> </u>	0.4
KM Mean	1.111	KM Standard Error of Mean	0.4
KM SD	2.447	95% KM (BCA) UCL	1.91
95% KM (t) UCL	1.876	95% KM (Percentile Bootstrap) UCL	1.89
95% KM (z) UCL	1.852	95% KM Bootstrap t UCL	2.4
90% KM Chebyshev UCL	2.462	95% KM Chebyshev UCL	3.07
97.5% KM Chebyshev UCL	3.923	99% KM Chebyshev UCL	5.59
Gamma G	OF Tests on Detec	ted Observations Only	
A-D Test Statistic	1.105	Anderson-Darling GOF Test	
5% A-D Critical Value	0.86	Detected Data Not Gamma Distributed at 5% Significance Lev	rel .
K-S Test Statistic	0.21	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.207	Detected Data Not Gamma Distributed at 5% Significance Lev	rel
Detected Data it	Not Gamma Distrib	uted at 5% Significance Level	
Gamr	ma Statistics on De	tected Data Only	
k hat (MLE)	0.272	k star (bias corrected MLE)	0.26
Theta hat (MLE)	6.029	These stee (bine commented MLE)	6.1
nu hat (MLE)		Theta star (bias corrected MLE)	
	11.42	nu star (bias corrected)	
Mean (detects)	11.42 1.639	` ′	
` 1	1.639	nu star (bias corrected)	
Gamma R	1.639	nu star (bias corrected)	
GROS may not be used when data	1.639 OS Statistics using set has > 50% NDs	nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs	
GROS may not be used when data GROS may not be used when kstar of detects is	1.639 OS Statistics using set has > 50% NDs s small such as <1.0	nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20)	
Gemma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS	1.639 COS Statistics using set has > 50% NDs s small such as <1.0, S method may yield it.	nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs	11.1:
Gemma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GRO This is espe	1.639 OS Statistics using set has > 50% NDs is small such as <1.0. S method may yield iscially true when the second seco	nu star (bias corrected) I Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small.	
Gemma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs	1.639 COS Statistics using set has > 50% NDs small such as <1.0. S method may yield is ecially true when the stand UCLs may be compared to the small such as and UCLs may be compared to the small stand using the small st	nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates	11.1
GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum	1.639 OS Statistics using set has > 50% NDs is small such as <1.0. S method may yield is scially true when the set and UCLs may be conducted to 1.00273	nu star (bias corrected) I Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean	11.1
GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum	1.639 COS Statistics using set has > 50% NDs is small such as <1.0, S method may yield is cially true when the set and UCLs may be conducted to the conducted of the conducted in the conducted	nu star (bias corrected) I Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median	1.11
GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum SD	1.639 COS Statistics using set has > 50% NDs is small such as <1.0, S method may yield is cially true when the sis and UCLs may be conducted to 1.00273 11.1 2.486	nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median CV	11.1 1.11 0.010 2.23
GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum	1.639 COS Statistics using set has > 50% NDs is small such as <1.0, S method may yield is cially true when the set and UCLs may be conducted to the conducted of the conducted in the conducted	nu star (bias corrected) I Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median	11.1 1.11 0.010 2.23
GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum SD	1.639 COS Statistics using set has > 50% NDs is small such as <1.0, S method may yield is cially true when the sis and UCLs may be conducted to 1.00273 11.1 2.486	nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median CV	11.1 0.010 2.23 0.23
Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum SD k hat (MLE)	1.639 COS Statistics using set has > 50% NDs s small such as <1.0, S method may yield it stally true when the stand UCLs may be conducted to 11.1 1 2.486 0.238	nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	1.11 0.010 2.23 0.23 4.70
Gemma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum SD k hat (MLE) Theta hat (MLE)	1.639 COS Statistics using set has > 50% NDs s small such as <1.0, S method may yield it stated by the collaboration of the collaborat	nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	1.11 0.010 2.23 0.23 4.70
Gemma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	1.639 OS Statistics using set has > 50% NDs s small such as <1.0, S method may yield is cially true when the stand UCLs may be conducted to 11.1, 2.486 0.238 4.673 14.77	nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	

Estimate	s of Gamma Para	ameters using KM Estimates	
Mean (KM)	1.111	SD (KM)	2.447
Variance (KM)	5.986	SE of Mean (KM)	0.45
k hat (KM)	0.206	k star (KM)	0.208
nu hat (KM)	12.79	nu star (KM)	12.89
theta hat (KM)	5.386	theta star (KM)	5.346
80% gamma percentile (KM)	1.494	90% gamma percentile (KM)	3.361
95% gamma percentile (KM)	5.669	99% gamma percentile (KM)	11.98
	•	,	
	Gamma Kaplan-M	eier (KM) Statistics	
Approximate Chi Square Value (12.89, α)	5.818	Adjusted Chi Square Value (12.89, β)	5.554
95% Gamma Approximate KM-UCL (use when n>=50)	2.462	95% Gamma Adjusted KM-UCL (use when n<50)	2.579
· ·		Detected Observations Only	
Shapiro Wilk Test Statistic	0.914	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.908	Detected Data appear Lognormal at 5% Significance Le	vel
Lilliefors Test Statistic	0.157	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.188	Detected Data appear Lognormal at 5% Significance Le	vel
Detected	Data appear Log	normal at 5% Significance Level	
Lognor		Help a learning New Date ste	
*		Using Imputed Non-Detects	0.010
Mean in Original Scale	1.111	Mean in Log Scale	-3.213
SD in Original Scale	2.487	SD in Log Scale	2.847
95% t UCL (assumes normality of ROS data)	1.869	95% Percentile Bootstrap UCL	1.895
95% BCA Bootstrap UCL	2.24 33.51	95% Bootstrap t UCL	2.433
95% H-UCL (Log ROS)	33.51		
Statistics using KM es	timates on Logge	d Data and Assuming Lognormal Distribution	
KM Mean (logged)	-3.196	KM Geo Mean	0.0409
KM SD (logged)	2.789	95% Critical H Value (KM-Log)	5.048
KM Standard Error of Mean (logged)	0.515	95% H-UCL (KM -Log)	26.18
KM SD (logged)	2.789	95% Critical H Value (KM-Log)	5.048
KM Standard Error of Mean (logged)	0.515	, J	
	ı		
	DL/2 St	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.111	Mean in Log Scale	-3.232
SD in Original Scale	2.487	SD in Log Scale	2.864
95% t UCL (Assumes normality)	1.869	95% H-Stat UCL	35.5
DL/2 is not a recomm	ended method, p	rovided for comparisons and historical reasons	
		ution Free UCL Statistics	
Detected Data	appear Lognorm	al Distributed at 5% Significance Level	
		UCL to Use	
97.5% KM (Chebyshev) UCL	3.923		
Navon de la desta de	- 050/ 1101	did de la	
		vided to help the user to select the most appropriate 95% UCL.	
	· · · · · · · · · · · · · · · · · · ·	size, data distribution, and skewness.	
		ulation studies summarized in Singh, Maichle, and Lee (2006).	
nowever, simulations results will not cover all	nedi vvorio data set	s; for additional insight the user may want to consult a statistician.	

FLUORENE			
	0	Out de	
T. W. J. (0)		Statistics	
Total Number of Observations	31	Number of Distinct Observations	30
Number of Detects	9	Number of Non-Detects	22
Number of Distinct Detects	9	Number of Distinct Non-Detects	2.00000
Minimum Detect Maximum Detect	0.00249	Minimum Non-Detect Maximum Non-Detect	0.00639
Variance Detects	0.26	Percent Non-Detects	70.97%
Mean Detects	0.00733	SD Detects	0.0856
Median Detects	0.0241	CV Detects	1.57
Skewness Detects	2.173	Kurtosis Detects	4.57
Mean of Logged Detects	-4.011	SD of Logged Detects	1.662
Wealt of Logged Detects	-4.011	OD of Logged Delects	1.002
	Normal GOF Tes	st on Detects Only	
Shapiro Wilk Test Statistic	0.662	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.829	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.381	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.274	Detected Data Not Normal at 5% Significance Level	
Detect	ed Data Not Norn	nal at 5% Significance Level	
Vanian Maiay (VM) Chalde	ation walner Norma	Il Critical Values and other Nonparametric UCLs	
	0.0177	·	0.00941
KM Mean KM SD	0.0177	KM Standard Error of Mean	0.00941
	0.0494	95% KM (BCA) UCL	
95% KM (t) UCL 95% KM (z) UCL	0.0337	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	0.0343
90% KM Chebyshev UCL	0.0332	95% KM Chebyshev UCL	0.0587
97.5% KM Chebyshev UCL	0.046	99% KM Chebyshev UCL	0.0367
97.3% (NVI CHEDYSHEV CCL	0.0703	99 % NW Chebysnev OCL	0.111
Gamm	a GOF Tests on D	Detected Observations Only	
A-D Test Statistic	0.524	Anderson-Darling GOF Test	
5% A-D Critical Value	0.766	Detected data appear Gamma Distributed at 5% Significance	e Level
K-S Test Statistic	0.242	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.293	Detected data appear Gamma Distributed at 5% Significance	e Level
Detected date	a appear Gamma	Distributed at 5% Significance Level	
		n Detected Data Only	
k hat (MLE)	0.567	k star (bias corrected MLE)	0.452
Theta hat (MLE)	0.0959	Theta star (bias corrected MLE)	0.12
nu hat (MLE) Mean (detects)	10.21 0.0544	nu star (bias corrected)	8.138
iviean (detects)	0.0344		
Gamm	a ROS Statistics u	sing Imputed Non-Detects	
GROS may not be used when o	data set has > 50%	NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detec	ts is small such as	<1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, G	ROS method may	yield incorrect values of UCLs and BTVs	
This is e	especially true when	n the sample size is small.	
For gamma distributed detected data, B	TVs and UCLs may	y be computed using gamma distribution on KM estimates	
Minimum	0.00249	Mean	0.0229
Maximum	0.26	Median	0.01
SD	0.0487	CV	2.13
k hat (MLE)	0.893	k star (bias corrected MLE)	0.828
Theta hat (MLE)	0.0256	Theta star (bias corrected MLE)	0.0276
nu hat (MLE)	55.38	nu star (bias corrected)	51.35
Adjusted Level of Significance (β)	0.0413		·
Approximate Chi Square Value (51.35, α)	35.89	Adjusted Chi Square Value (51.35, β)	35.18
95% Gamma Approximate UCL (use when n>=50)	0.0327	95% Gamma Adjusted UCL (use when n<50)	0.0334
	· <u></u>		

$\label{eq:prouch} \textbf{ProUCL Output for Polycyclic Aromatic Hydrocarbons (PAHs) in Soil}$

Gamma Paramete	rs using KM Estimates	
0.0177	SD (KM)	0.0494
0.00244	SE of Mean (KM)	0.00941
0.128	k star (KM)	0.138
7.963	nu star (KM)	8.526
0.138	theta star (KM)	0.129
0.0179	90% gamma percentile (KM)	0.0518
0.099	99% gamma percentile (KM)	0.239
	•	
	* * * * * * * * * * * * * * * * * * * *	2.863
0.0496	95% Gamma Adjusted KM-UCL (use when n<50)	0.0527
005 T D	to d Observed to a Oak	
	<u> </u>	
	<u> </u>	
appear Logiloilli	arato a significance Level	
ROS Statistics Using	Imputed Non-Detects	
	· ·	-5.304
		1.212
	•	0.0337
0.0434	· ·	0.105
0.0188	3503 2303 247 253	
	L	
tes on Logged Dat	a and Assuming Lognormal Distribution	
-5.359	KM Geo Mean	
		0.00471
1.208	95% Critical H Value (KM-Log)	0.00471 2.681
1.208 0.232	95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	
	` **	2.681
0.232	95% H-UCL (KM -Log)	2.681 0.0176
0.232 1.208	95% H-UCL (KM -Log)	2.681 0.0176
0.232 1.208	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	2.681 0.0176
0.232 1.208 0.232 DL/2 Statistic	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) s DL/2 Log-Transformed	2.681 0.0176 2.681
0.232 1.208 0.232 DL/2 Statistic	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 8 DL/2 Log-Transformed Mean in Log Scale	2.681 0.0176 2.681
0.232 1.208 0.232 DL/2 Statistic 0.0182 0.0501	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 8 DL/2 Log-Transformed Mean in Log Scale SD in Log Scale	2.681 0.0176 2.681 -5.187 1.151
0.232 1.208 0.232 DL/2 Statistic 0.0182 0.0501 0.0335	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 8 DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL	2.681 0.0176 2.681
0.232 1.208 0.232 DL/2 Statistic 0.0182 0.0501 0.0335	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 8 DL/2 Log-Transformed Mean in Log Scale SD in Log Scale	2.681 0.0176 2.681 -5.187 1.151
0.232 1.208 0.232 DL/2 Statistic 0.0182 0.0501 0.0335 ed method, provide	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 8 DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL od for comparisons and historical reasons	2.681 0.0176 2.681 -5.187 1.151
0.232 1.208 0.232 DL/2 Statistic 0.0182 0.0501 0.0335 ed method, provide	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 8 DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL dd for comparisons and historical reasons Free UCL Statistics	2.681 0.0176 2.681 -5.187 1.151
0.232 1.208 0.232 DL/2 Statistic 0.0182 0.0501 0.0335 ed method, provide	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 8 DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL od for comparisons and historical reasons	2.681 0.0176 2.681 -5.187 1.151
0.232 1.208 0.232 DL/2 Statistic 0.0182 0.0501 0.0335 ed method, provide metric Distribution pear Gamma Distri	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 8 DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons Free UCL Statistics buted at 5% Significance Level	2.681 0.0176 2.681 -5.187 1.151
0.232 1.208 0.232 DL/2 Statistic 0.0182 0.0501 0.0335 ed method, provide	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 8 DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons Free UCL Statistics buted at 5% Significance Level	2.681 0.0176 2.681 -5.187 1.151
0.232 1.208 0.232 DL/2 Statistic 0.0182 0.0501 0.0335 ed method, provide metric Distribution pear Gamma Distri	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 8 DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons Free UCL Statistics buted at 5% Significance Level	2.681 0.0176 2.681 -5.187 1.151
0.232 1.208 0.232 DL/2 Statistic 0.0182 0.0501 0.0335 ed method, provide metric Distribution pear Gamma Distri	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 8 DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons Free UCL Statistics buted at 5% Significance Level	2.681 0.0176 2.681 -5.187 1.151
0.232 1.208 0.232 DL/2 Statistic 0.0182 0.0501 0.0335 ed method, provide metric Distribution pear Gamma Distri Suggested UCL 0.0527	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 8 DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL ed for comparisons and historical reasons Free UCL Statistics buted at 5% Significance Level	2.681 0.0176 2.681 -5.187 1.151
0.232 1.208 0.232 DL/2 Statistic 0.0182 0.0501 0.0335 ad method, provide metric Distribution pear Gamma Distri Suggested UCL 0.0527	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 8 DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL od for comparisons and historical reasons Free UCL Statistics buted at 5% Significance Level	2.681 0.0176 2.681 -5.187 1.151
0.232 1.208 0.232 DL/2 Statistic 0.0182 0.0501 0.0335 ad method, provided metric Distribution pear Gamma Distri Suggested UCL 0.0527	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 8 DL/2 Log-Transformed Mean in Log Scale 95% H-Stat UCL od for comparisons and historical reasons Free UCL Statistics buted at 5% Significance Level to Use	2.681 0.0176 2.681 -5.187 1.151
	0.00244 0.128 7.963 0.138 0.0179 0.099 ma Kaplan-Meler (3.043 0.0496 GOF Test on Detect 0.907 0.829 0.197 0.274 a appear Lognorma ROS Statistics Using 0.0179 0.0502 0.0332 0.0434 0.0188	0.00244 SE of Mean (KM) 0.128 k star (KM) 7.963 nu star (KM) 0.138 theta star (KM) 0.0179 90% gamma percentile (KM) 0.099 99% gamma percentile (KM) 0.099 99% gamma percentile (KM) ma Kaplan-Meier (KM) Statistics 3.043 Adjusted Chi Square Value (8.53, β) 0.0496 95% Gamma Adjusted KM-UCL (use when n<50) GOF Test on Detected Observations Only 0.907 Shapiro Wilk GOF Test 0.829 Detected Data appear Lognormal at 5% Significance Level 0.197 Lilllefors GOF Test 0.274 Detected Data appear Lognormal at 5% Significance Level a appear Lognormal at 5% Significance Level BROS Statistics Using Imputed Non-Detects 0.0179 Mean in Log Scale 0.0502 SD in Log Scale 0.0332 95% Percentile Bootstrap UCL

IDENO(1,2,3-CD)PYRENE			
		- 11	
T	General		
Total Number of Observations	31	Number of Distinct Observations	3
Number of Detects	21	Number of Non-Detects	1
Number of Distinct Detects	21	Number of Distinct Non-Detects	1
Minimum Detect	0.00213	Minimum Non-Detect	0.0064
Maximum Detect	6.25 3.542	Maximum Non-Detect Percent Non-Detects	0.0075 32.269
Variance Detects Mean Detects	1.088	SD Detects	1.88
Median Detects Median Detects	0.112	CV Detects	1.00
Skewness Detects	1.769	Kurtosis Detects	2.0
Mean of Logged Detects	-2.299	SD of Logged Detects	2.70
Weal of Logged Detects	-2.299	3D 01 Logget Pelects	2.70
		t on Detects Only	
Shapiro Wilk Test Statistic	0.644	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.908	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.378	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.188	Detected Data Not Normal at 5% Significance Level	
Detecte	d Data Not Norm	nal at 5% Significance Level	
Kaplan-Meier (KM) Statist	tics using Normal	l Critical Values and other Nonparametric UCLs	
KM Mean	0.738	KM Standard Error of Mean	0.29
KM SD	1.594	95% KM (BCA) UCL	1.24
95% KM (t) UCL	1.236	95% KM (Percentile Bootstrap) UCL	1.2
95% KM (z) UCL	1.221	95% KM Bootstrap t UCL	1.47
90% KM Chebyshev UCL	1.618	95% KM Chebyshev UCL	2.01
97.5% KM Chebyshev UCL	2.571	99% KM Chebyshev UCL	3.65
Gamma	GOF Tests on Do	etected Ohservations Only	
Gamma A-D Test Statistic	GOF Tests on De	etected Observations Only Anderson-Darling GOF Test	
		-	Level
A-D Test Statistic	0.996	Anderson-Darling GOF Test	_evel
A-D Test Statistic 5% A-D Critical Value	0.996 0.85	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I	
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.996 0.85 0.196 0.206	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF	
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol	0.996 0.85 0.196 0.206	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level	
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol	0.996 0.85 0.196 0.206 Illow Appr. Gamm	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level	e Level
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol	0.996 0.85 0.196 0.206 Ilow Appr. Gammer mma Statistics on 0.291	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level Detected Data Only k star (bias corrected MLE)	Level 0.28
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol	0.996 0.85 0.196 0.206 Ilow Appr. Gammer mma Statistics on 0.291 3.74	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	0.28 3.8
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol	0.996 0.85 0.196 0.206 Ilow Appr. Gammer mma Statistics on 0.291	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level Detected Data Only k star (bias corrected MLE)	0.28 3.8
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	0.996 0.85 0.196 0.206 llow Appr. Gamm mma Statistics on 0.291 3.74 12.22 1.088	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level 1 Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.28 3.8
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma	0.996 0.85 0.196 0.206 llow Appr. Gamma 0.291 3.74 12.22 1.088	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level 1 Detected Data Only R star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects	
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when data	0.996 0.85 0.196 0.206 1llow Appr. Gamma mma Statistics on 0.291 3.74 12.22 1.088	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs	0.28 3.8
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol Gain k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when kstar of detects	0.996 0.85 0.196 0.206 0.206 Illow Appr. Gammi mma Statistics on 0.291 3.74 12.22 1.088 I ROS Statistics us ata set has > 50% N s is small such as	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20)	0.28 3.8
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when data GROS may not be used when kstar of detects For such situations, GR	0.996 0.85 0.196 0.206 llow Appr. Gammi mma Statistics on 0.291 3.74 12.22 1.088 a ROS Statistics use at a set has > 50% N s is small such as y ROS method may y	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) irield incorrect values of UCLs and BTVs	0.28 3.8
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when da GROS may not be used when kstar of detects For such situations, GR This is es	0.996 0.85 0.196 0.206 lilow Appr. Gammi mma Statistics on 0.291 3.74 12.22 1.088 a ROS Statistics us at a set has > 50% N s is small such as ROS method may y specially true when	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) iteld incorrect values of UCLs and BTVs the sample size is small.	0.28 3.8
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when date GROS may not be used when kstar of detects For such situations, GR This is set For gamma distributed detected data, BT	0.996 0.85 0.196 0.206 0.206 lilow Appr. Gamm: mma Statistics on 0.291 3.74 12.22 1.088 a ROS Statistics us stata set has > 50% N s is small such as ROS method may y specially true when Vs and UCLs may	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) irield incorrect values of UCLs and BTVs ithe sample size is small.	0.28 3.8 11.
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when date GROS may not be used when kstar of detects For such situations, GR This is see For gamma distributed detected data, BT Minimum	0.996 0.85 0.196 0.206 0.206 llow Appr. Gamm: mma Statistics on 0.291 3.74 12.22 1.088 a ROS Statistics us at a set has > 50% N s is small such as ROS method may y specially true when Vs and UCLs may 0.00213	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean	0.28 3.8 11.
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol Gai k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when date GROS may not be used when kstar of detects For such situations, GR This is see For gamma distributed detected data, BT Minimum Maximum	0.996 0.85 0.196 0.206 0.206 llow Appr. Gamm. mma Statistics on 0.291 3.74 12.22 1.088 a ROS Statistics use ata set has > 50% N s is small such as a ROS method may y specially true when Vs and UCLs may 0.00213 6.25	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level In Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median	0.28 3.8 11
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol Gai k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when date GROS may not be used when date GROS may not be used when star of detects For such situations, GR This is es For gamma distributed detected data, BT Minimum Maximum SD	0.996 0.85 0.196 0.206 0.206 llow Appr. Gamm. mma Statistics on 0.291 3.74 12.22 1.088 a ROS Statistics use ata set has > 50% N s is small such as as ROS method may y specially true when Vs and UCLs may 0.00213 6.25 1.62	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) itield incorrect values of UCLs and BTVs the sample size is small. The computed using gamma distribution on KM estimates Mean Median CV	0.28 3.8 11 0.7 0.7 0.0
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol Real (MLE) Theta hat (MLE) Theta hat (MLE) Mean (detects) GROS may not be used when kstar of detects For such situations, GR This is es For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE)	0.996 0.85 0.196 0.206 0.206 0.206 0.206 0.201 3.74 12.22 1.088 0.87 0.88 0.891 0.99	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level In Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ideld incorrect values of UCLs and BTVs it the sample size is small. The computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.26 3.8 11 0.7 0.7 0.0 2.18 0.25
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol Rear (MLE) Theta hat (MLE) Theta hat (MLE) Mean (detects) GROS may not be used when kstar of detects For such situations, GR This is es For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE) Theta hat (MLE)	0.996 0.85 0.196 0.206 0.206 0.206 0.206 0.201 3.74 12.22 1.088 0.85 Statistics us at a set has > 50% N is is small such as 80S method may y specially true when Vs and UCLs may 0.00213 6.25 1.62 0.258 2.871	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level In Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) iteld incorrect values of UCLs and BTVs the sample size is small. the computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.26 3.8 111 0.7 0.7 0.0 2.18 0.25
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol Rear (MLE) Theta hat (MLE) Theta hat (MLE) Mean (detects) GROS may not be used when kstar of detects For such situations, GR This is es For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE) Theta hat (MLE)	0.996 0.85 0.196 0.206 0.206 0.206 0.206 0.201 3.74 12.22 1.088 0.88 0.891 0.891 0.2	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level In Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ideld incorrect values of UCLs and BTVs it the sample size is small. The computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.28 3.8
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol Rear (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when de GROS may not be used when de GROS may not be used when kstar of detects For such situations, GR This is es For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) Adjusted Level of Significance (β)	0.996 0.85 0.196 0.206 0.206 0.206 0.206 0.201 3.74 12.22 1.088 0.291 3.74 12.22 1.088 0.88 0.00213 6.25 1.62 0.258 2.871 15.98 0.0413	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level In Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) iteld incorrect values of UCLs and BTVs the sample size is small. Decomputed using gamma distribution on KM estimates Mean Median CV Restar (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE)	0.28 3.8 11. 0.7 0.0 2.18 0.25 2.9
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data fol Rear Management (MLE) Theta hat (MLE) The Mean (detects) GROS may not be used when kstar of detects For such situations, GR This is es For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE) Theta hat (MLE) The Mean (MLE) The Mean (MLE) The Mean Maximum Maximum SD K hat (MLE) The Maximum The Max	0.996 0.85 0.196 0.206 0.206 0.206 0.206 0.201 3.74 12.22 1.088 0.88 0.891 0.891 0.2	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Significance a Distribution at 5% Significance Level In Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) iteld incorrect values of UCLs and BTVs the sample size is small. the computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.28 3.8 111 0.7 0.0 2.18 0.25

Estimat	es of Gamma Par	ameters using KM Estimates	
Mean (KM)	0.738	SD (KM)	1.594
Variance (KM)	2.542	SE of Mean (KM)	0.293
k hat (KM)	0.214	k star (KM)	0.215
nu hat (KM)	13.29	nu star (KM)	13.34
theta hat (KM)	3.444	theta star (KM)	3.432
80% gamma percentile (KM)	1.008	90% gamma percentile (KM)	2.231
95% gamma percentile (KM)	3.73	99% gamma percentile (KM)	7.809
		<u> </u>	
		Neier (KM) Statistics	
Approximate Chi Square Value (13.34, α)	6.12	Adjusted Chi Square Value (13.34, β)	5.848
95% Gamma Approximate KM-UCL (use when n>=50)	1.609	95% Gamma Adjusted KM-UCL (use when n<50)	1.683
Logno	rmal COE Tast on	Detected Observations Only	
Shapiro Wilk Test Statistic	0.918	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.908	Detected Data appear Lognormal at 5% Significance Leve	ı
Lilliefors Test Statistic	0.908	Lillefors GOF Test	1
5% Lilliefors Critical Value	0.134	Detected Data appear Lognormal at 5% Significance Leve	ı
		Inormal at 5% Significance Level	
500000	Data appoar Log	mornial at 0 % significance cover	
Lognor	mal ROS Statistics	Using Imputed Non-Detects	
Mean in Original Scale	0.738	Mean in Log Scale	-3.282
SD in Original Scale	1.621	SD in Log Scale	2.641
95% t UCL (assumes normality of ROS data)	1.232	95% Percentile Bootstrap UCL	1.249
95% BCA Bootstrap UCL	1.295	95% Bootstrap t UCL	1.543
95% H-UCL (Log ROS)	12.51	·	
		L.	
Statistics using KM es	stimates on Logge	ed Data and Assuming Lognormal Distribution	
KM Mean (logged)	-3.356	KM Geo Mean	0.0349
KM SD (logged)	2.664	95% Critical H Value (KM-Log)	4.848
KM Standard Error of Mean (logged)	0.493	95% H-UCL (KM -Log)	12.82
KM SD (logged)	2.664	95% Critical H Value (KM-Log)	4.848
KM Standard Error of Mean (logged)	0.493		
	DI 00	catanta.	
DI Ø Normal	DL/2 S		
DL/2 Normal	0.720	DL/2 Log-Transformed	2 270
Mean in Original Scale		Mean in Log Scale SD in Log Scale	-3.378
SD in Original Scale	1.621	SD In Log Scale 95% H-Stat UCL	2.721
95% t UCL (Assumes normality)	1.232		10.09
DEIZ IS HOLZ ISCONINI	ended medica, p	rovided for comparisons and historical reasons	
Non	parametric Distrib	ution Free UCL Statistics	
Detected Data appo	ear Approximate	Gamma Distributed at 5% Significance Level	
	Suggested	UCL to Use	
Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but	1.683		
k<=1)			
		ormal) distribution passing one of the GOF test	
When applicable, it is suggested to use a l	JCL based upon a c	listribution (e.g., gamma) passing both GOF tests in ProUCL	
Note: Suggestions reporting the salestics of	2 05% LICL 252 255	wided to help the upor to select the most engraprists 050/ LICI	
** * *		wided to help the user to select the most appropriate 95% UCL.	
		a size, data distribution, and skewness.	
		ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician.	
However, Simulations results will not cover all	r vear vv or iti tiatid Se	to, for additional morgini the door may want to consult a statistician.	

PHENANTHRENE			
	General	Statistics	
Total Number of Observations	31	Number of Distinct Observations	3
Number of Detects	14	Number of Non-Detects	1
Number of Distinct Detects	14	Number of Distinct Non-Detects	1
Minimum Detect	0.00295	Minimum Non-Detect	0.0063
Maximum Detect	4.14	Maximum Non-Detect	0.21
Variance Detects	1.447	Percent Non-Detects	54.849
Mean Detects	0.675	SD Detects	1.20
Median Detects	0.0878	CV Detects	1.78
Skewness Detects	2.309	Kurtosis Detects	5.23
Mean of Logged Detects	-2.349	SD of Logged Detects	2.3
	l.	,	
		st on Detects Only	
Shapiro Wilk Test Statistic	0.633	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.874	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.318	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.226	Detected Data Not Normal at 5% Significance Level	
Detect	ed Data Not Norn	nal at 5% Significance Level	
Kaplan-Meier (KM) Stati	stics using Norma	al Critical Values and other Nonparametric UCLs	
KM Mean	0.308	KM Standard Error of Mean	0.15
KM SD	0.847	95% KM (BCA) UCL	0.61
95% KM (t) UCL	0.576	95% KM (Percentile Bootstrap) UCL	0.5
95% KM (z) UCL	0.567	95% KM Bootstrap t UCL	1.05
90% KM Chebyshev UCL	0.781	95% KM Chebyshev UCL	0.99
97.5% KM Chebyshev UCL	1.294	99% KM Chebyshev UCL	1.87
37.576 Tall Chasyshev 332	1.201	35 % Tun Chasyshov GGE	1.07
Gamm	a GOF Tests on D	Detected Observations Only	
A-D Test Statistic	0.561	Anderson-Darling GOF Test	
5% A-D Critical Value	0.823	Detected data appear Gamma Distributed at 5% Significance	e Level
K-S Test Statistic	0.21	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.246	Detected data appear Gamma Distributed at 5% Significance	e Level
Detected date	a appear Gamma	a Distributed at 5% Significance Level	
		n Detected Data Only	
k hat (MLE)	0.345	k star (bias corrected MLE)	0.31
Theta hat (MLE)	1.957	Theta star (bias corrected MLE)	2.11
nu hat (MLE)	9.653	nu star (bias corrected)	8.91
Mean (detects)	0.675		
Gamm	a ROS Statistics u	using Imputed Non-Detects	
GROS may not be used when o	data set has > 50%	NDs with many tied observations at multiple DLs	
GROS may not be used when kstar of detec	ts is small such as	<1.0, especially when the sample size is small (e.g., <15-20)	
For such situations, G	ROS method may	yield incorrect values of UCLs and BTVs	
This is e	especially true whe	n the sample size is small.	
For gamma distributed detected data, B	TVs and UCLs ma	y be computed using gamma distribution on KM estimates	
Minimum	0.00295	Mean	0.3
Maximum	4.14	Median	0.0
SD	0.86	CV	2.77
k hat (MLE)	0.287	k star (bias corrected MLE)	0.28
Theta hat (MLE)	1.079	Theta star (bias corrected MLE)	1.10
nu hat (MLE)	17.82	nu star (bias corrected)	17.4
Adjusted Level of Significance (β)	0.0413	·	
Approximate Chi Square Value (17.43, α)	8.981	Adjusted Chi Square Value (17.43, β)	8.64
95% Gamma Approximate UCL (use when n>=50)	0.602	95% Gamma Adjusted UCL (use when n<50)	0.62

$\label{eq:prouch} \textbf{ProUCL Output for Polycyclic Aromatic Hydrocarbons (PAHs) in Soil}$

Estimates	s of Gamma Paramete	ers using KM Estimates	
Mean (KM)	0.308	SD (KM)	0.847
Variance (KM)	0.718	SE of Mean (KM)	0.158
k hat (KM)	0.132	k star (KM)	0.141
nu hat (KM)	8.18	nu star (KM)	8.722
theta hat (KM)	2.332	theta star (KM)	2.187
80% gamma percentile (KM)	0.317	90% gamma percentile (KM)	0.903
95% gamma percentile (KM)	1.714	99% gamma percentile (KM)	4.098
	amma Kaplan-Meier	· · ·	
Approximate Chi Square Value (8.72, α)	3.16	Adjusted Chi Square Value (8.72, β)	2.976
95% Gamma Approximate KM-UCL (use when n>=50)	0.849	95% Gamma Adjusted KM-UCL (use when n<50)	0.902
Lognorm	nal GOE Tast on Data	acted Observations Only	
Shapiro Wilk Test Statistic	0.942	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.942	Detected Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.143	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.226	Detected Data appear Lognormal at 5% Significance Level	
		nal at 5% Significance Level	
Lognorm	al ROS Statistics Usin	ng Imputed Non-Detects	
Mean in Original Scale	0.306	Mean in Log Scale	-4.358
SD in Original Scale	0.862	SD in Log Scale	2.44
95% t UCL (assumes normality of ROS data)	0.569	95% Percentile Bootstrap UCL	0.57
95% BCA Bootstrap UCL	0.718	95% Bootstrap t UCL	1.159
, , , , , , , , , , , , , , , , , , , ,	0.718 1.861	95% Bootstrap t UCL	1.159
95% BCA Bootstrap UCL		95% Bootstrap t UCL	1.159
95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	1.861	95% Bootstrap t UCL	
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged)	1.861 mates on Logged Da -4.024	ata and Assuming Lognormal Distribution KM Geo Mean	0.0179
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged) KM SD (logged)	1.861 mates on Logged Da -4.024 2.197	ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log)	0.0179 4.113
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	1.861 mates on Logged Da -4.024 2.197 0.432	ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	0.0179 4.113 1.04
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estir KM Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged)	1.861 mates on Logged Da -4.024 2.197 0.432 2.197	ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log)	0.0179 4.113
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	1.861 mates on Logged Da -4.024 2.197 0.432	ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	0.0179 4.113 1.04
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estir KM Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged)	1.861 mates on Logged Da -4.024 2.197 0.432 2.197 0.432	Ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	0.0179 4.113 1.04
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM SD (logged)	1.861 mates on Logged Da -4.024 2.197 0.432 2.197	ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	0.0179 4.113 1.04
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estil KM Mean (logged) KM SD (logged) KM STandard Error of Mean (logged) KM Standard Error of Mean (logged)	1.861 mates on Logged Da -4.024 2.197 0.432 2.197 0.432 DL/2 Statistic	ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) CS DL/2 Log-Transformed	0.0179 4.113 1.04 4.113
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estil KM Mean (logged) KM SD (logged) KM STandard Error of Mean (logged) MEAN STANDARD (logged) MEAN STANDARD (logged)	1.861 mates on Logged Da -4.024 2.197 0.432 2.197 0.432 DL/2 Statistic	Ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) CS DL/2 Log-Transformed Mean in Log Scale	0.0179 4.113 1.04 4.113
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) Mean in Original Scale SD in Original Scale	1.861 mates on Logged Da -4.024 2.197 0.432 2.197 0.432 DL/2 Statistic 0.31 0.86	ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) CS DL/2 Log-Transformed Mean in Log Scale SD in Log Scale	0.0179 4.113 1.04 4.113 -4.02 2.291
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estil KM Mean (logged) KM SD (logged) KM STandard Error of Mean (logged) KM STandard Error of Mean (logged) Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality)	1.861 mates on Logged Da -4.024 2.197 0.432 2.197 0.432 DL/2 Statistic 0.31 0.86 0.572	Ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) CS DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL	0.0179 4.113 1.04 4.113
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estil KM Mean (logged) KM SD (logged) KM STandard Error of Mean (logged) KM STandard Error of Mean (logged) Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality)	1.861 mates on Logged Da -4.024 2.197 0.432 2.197 0.432 DL/2 Statistic 0.31 0.86 0.572	ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) CS DL/2 Log-Transformed Mean in Log Scale SD in Log Scale	0.0179 4.113 1.04 4.113 -4.02 2.291
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged) KM SD (logged) KM STandard Error of Mean (logged) KM Standard Error of Mean (logged) EXIST Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 Is not a recomment	1.861 mates on Logged Da -4.024 2.197 0.432 2.197 0.432 DL/2 Statistic 0.31 0.86 0.572	cs DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL Jed for comparisons and historical reasons	0.0179 4.113 1.04 4.113 -4.02 2.291
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged) KM SD (logged) KM STandard Error of Mean (logged) KM Standard Error of Mean (logged) Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommentation of the state of the stat	1.861 mates on Logged Da -4.024 2.197 0.432 2.197 0.432 DL/2 Statistic 0.31 0.86 0.572 nded method, provid	cs DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL Jed for comparisons and historical reasons	0.0179 4.113 1.04 4.113 -4.02 2.291
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged) KM SD (logged) KM STandard Error of Mean (logged) KM Standard Error of Mean (logged) Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommentation of the state of the stat	1.861 mates on Logged Da -4.024 2.197 0.432 2.197 0.432 DL/2 Statistic 0.31 0.86 0.572 nded method, provid	Ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 100 September 1	0.0179 4.113 1.04 4.113 -4.02 2.291
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged) KM SD (logged) KM STandard Error of Mean (logged) KM Standard Error of Mean (logged) Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommentation of the state of the stat	1.861 mates on Logged Da -4.024 2.197 0.432 2.197 0.432 DL/2 Statistic 0.31 0.86 0.572 nded method, provid	Ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 100 Scale SD In Log Scale 95% H-Stat UCL 101 Ided for comparisons and historical reasons 101 Free UCL Statistics 102 Interval of the statistics 103 Interval of the statistics 104 Interval of the statistics 105 Interval of the statistics 105 Interval of the statistics 105 Interval of the statistics 106 Interval of the statistics 107 Interval of the statistics 107 Interval of the statistics 108 Interval of the statistics 10	0.0179 4.113 1.04 4.113 -4.02 2.291
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged) KM SD (logged) KM ST (logged) KM ST (logged) KM ST (logged) Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recomment Nonpa Detected Data Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but	1.861 mates on Logged Da	Ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 100 Scale SD In Log Scale 95% H-Stat UCL 101 Ided for comparisons and historical reasons 101 Free UCL Statistics 102 Interval of the statistics 103 Interval of the statistics 104 Interval of the statistics 105 Interval of the statistics 105 Interval of the statistics 105 Interval of the statistics 106 Interval of the statistics 107 Interval of the statistics 107 Interval of the statistics 108 Interval of the statistics 10	0.0179 4.113 1.04 4.113 -4.02 2.291
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged) KM SD (logged) KM STandard Error of Mean (logged) KM Standard Error of Mean (logged) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 Is not a recommental Nonpa	mates on Logged Da -4.024 2.197 0.432 2.197 0.432 DL/2 Statistic 0.31 0.86 0.572 Inded method, provid arametric Distribution appear Gamma Distribution	Ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 100 Scale SD In Log Scale 95% H-Stat UCL 101 Ided for comparisons and historical reasons 101 Free UCL Statistics 102 Interval of the statistics 103 Interval of the statistics 104 Interval of the statistics 105 Interval of the statistics 105 Interval of the statistics 105 Interval of the statistics 106 Interval of the statistics 107 Interval of the statistics 107 Interval of the statistics 108 Interval of the statistics 10	0.0179 4.113 1.04 4.113 -4.02 2.291
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged) KM SD (logged) KM ST (logged) KM ST (logged) KM ST (logged) Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recomment Nonpa Detected Data Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but	mates on Logged Da -4.024 2.197 0.432 2.197 0.432 DL/2 Statistic 0.31 0.86 0.572 Inded method, provid arametric Distribution appear Gamma Distribution	Ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 100 Scale SD In Log Scale 95% H-Stat UCL 101 Ided for comparisons and historical reasons 101 Free UCL Statistics 102 Interval of the statistics 103 Interval of the statistics 104 Interval of the statistics 105 Interval of the statistics 105 Interval of the statistics 105 Interval of the statistics 106 Interval of the statistics 107 Interval of the statistics 107 Interval of the statistics 108 Interval of the statistics 10	0.0179 4.113 1.04 4.113 -4.02 2.291
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recomment Nonpe Detected Data Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1)	1.861 mates on Logged Da	Ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 100 Scale SD In Log Scale 95% H-Stat UCL 101 Ided for comparisons and historical reasons 101 Free UCL Statistics 102 Interval of the statistics 103 Interval of the statistics 104 Interval of the statistics 105 Interval of the statistics 105 Interval of the statistics 105 Interval of the statistics 106 Interval of the statistics 107 Interval of the statistics 107 Interval of the statistics 108 Interval of the statistics 10	0.0179 4.113 1.04 4.113 -4.02 2.291
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged) KM Standard Error of Mean (logged) Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recomment Nonpa Detected Data Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1)	1.861 mates on Logged Da	ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) CS DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL ided for comparisons and historical reasons In Free UCL Statistics ributed at 5% Significance Level	0.0179 4.113 1.04 4.113 -4.02 2.291
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM esti KM Mean (logged) KM SD (logged) FOR SD (logged) Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recomment Nonpa Petected Data Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but k<=1) Note: Suggestions regarding the selection of a Recommendations are based upon the interpretations.	mates on Logged Da -4.024 2.197 0.432 2.197 0.432 DL/2 Statistic 0.31 0.86 0.572 Inded method, provided appear Gamma Distribution appear Gamma Dis	ata and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) So In Log Scale So In Log Scale 95% H-Stat UCL Ided for comparisons and historical reasons In Free UCL Statistics ributed at 5% Significance Level It to help the user to select the most appropriate 95% UCL.	0.0179 4.113 1.04 4.113 -4.02 2.291

PYRENE			
	General	Statistics	
Total Number of Observations	31	Number of Distinct Observations	3-
Number of Detects	22	Number of Non-Detects	9
Number of Distinct Detects	22	Number of Distinct Non-Detects	9
Minimum Detect	0.0028	Minimum Non-Detect	0.00644
Maximum Detect	11.8	Maximum Non-Detect	0.0074
Variance Detects	9.213	Percent Non-Detects	29.03%
Mean Detects	1.543	SD Detects	3.035
Median Detects	0.0997	CV Detects	1.96
Skewness Detects	2.365	Kurtosis Detects	5.64
Mean of Logged Detects	-2.317	SD of Logged Detects	2.83
	Normal GOF Tes	st on Detects Only	
Shapiro Wilk Test Statistic	0.589	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.911	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.366	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.184	Detected Data Not Normal at 5% Significance Level	
		nal at 5% Significance Level	
		·	
Kaplan-Meier (KM) Statis	stics using Norma	l Critical Values and other Nonparametric UCLs	
KM Mean	1.096	KM Standard Error of Mean	0.477
KM SD	2.594	95% KM (BCA) UCL	1.955
95% KM (t) UCL	1.905	95% KM (Percentile Bootstrap) UCL	1.92
95% KM (z) UCL	1.88	95% KM Bootstrap t UCL	2.416
90% KM Chebyshev UCL	2.527	95% KM Chebyshev UCL	3.175
97.5% KM Chebyshev UCL	4.074	99% KM Chebyshev UCL	5.841
Gamma	a GOF Tests on D	etected Observations Only	
A-D Test Statistic	1.219	Anderson-Darling GOF Test	
5% A-D Critical Value	0.869	Detected Data Not Gamma Distributed at 5% Significance	Level
K-S Test Statistic	0.187	Kolmogorov-Smirnov GOF	
5% K-S Critical Value	0.203	Detected data appear Gamma Distributed at 5% Significance	e Level
Detected data fo	llow Appr. Gamm	a Distribution at 5% Significance Level	
		n Detected Data Only	
k hat (MLE)	0.257	k star (bias corrected MLE)	0.252
Theta hat (MLE)	6.001	Theta star (bias corrected MLE)	6.114
nu hat (MLE)	11.31	nu star (bias corrected)	11.1
Mana (data da)	1.543		
Mean (detects)		•	
, 1	a ROS Statistics II	eing Imputed Non-Detects	
Gamma		sing Imputed Non-Detects NDs with many tied observations at multiple DLs	
GROS may not be used when d	lata set has > 50% l	NDs with many tied observations at multiple DLs	
GROS may not be used when d	lata set has > 50% f ts is small such as	NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20)	
GROS may not be used when d GROS may not be used when kstar of detect For such situations, Gr	lata set has > 50% It ts is small such as ROS method may y	NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) //ield incorrect values of UCLs and BTVs	
GROS may not be used when d GROS may not be used when kstar of detect For such situations, Gi This is e	lata set has > 50% to ts is small such as ROS method may y especially true where	NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20)	
GROS may not be used when d GROS may not be used when kstar of detect For such situations, Gi This is e	lata set has > 50% to ts is small such as ROS method may y especially true where	NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs the sample size is small.	1.098
GROS may not be used when degrees of detections of the start of the start of the start of detections of the start of t	lata set has > 50% Its is small such as ROS method may y especially true when TVs and UCLs may	NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs Ithe sample size is small. Ve computed using gamma distribution on KM estimates	
GROS may not be used when d GROS may not be used when kstar of detect For such situations, Gi This is e For gamma distributed detected data, B' Minimum	lata set has > 50% I ts is small such as ROS method may y especially true wher TVs and UCLs may 0.0028	NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs In the sample size is small. The computed using gamma distribution on KM estimates Mean	0.0124
Gemming GROS may not be used when dignored GROS may not be used when kstar of detection for such situations, GROS may not be used when kstar of detection for such situations, GROS may not be used when kstar of detection for such situations, GROS may not be used when kstar of detection for such situations and situation for such situations and such situations are such situations.	lata set has > 50% It ts is small such as ROS method may y especially true wher TVs and UCLs may 0.0028 11.8	NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs It he sample size is small. It be computed using gamma distribution on KM estimates Mean Median	0.012 ⁴ 2.40°
GROS may not be used when d GROS may not be used when kstar of detect For such situations, GI This is e For gamma distributed detected data, B' Minimum Maximum SD	lata set has > 50% Its is small such as ROS method may y specially true when TVs and UCLs may 0.0028 11.8 2.636	NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs In the sample size is small. The computed using gamma distribution on KM estimates Mean Median CV	0.012 ⁴ 2.401 0.232
GROS may not be used when d GROS may not be used when kstar of detect For such situations, Gi This is e For gamma distributed detected data, B' Minimum Maximum SD k hat (MLE)	lata set has > 50% Its is small such as ROS method may y specially true wher TVs and UCLs may 0.0028 11.8 2.636 0.234	NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs In the sample size is small. In the computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.012 ² 2.401 0.232 4.722
GROS may not be used when d GROS may not be used when kstar of detect For such situations, Gi This is e For gamma distributed detected data, B' Minimum Maximum SD k hat (MLE) Theta hat (MLE)	lata set has > 50% Its is small such as ROS method may y specially true wher TVs and UCLs may 0.0028 11.8 2.636 0.234 4.7	NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) vield incorrect values of UCLs and BTVs In the sample size is small. v be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.0124 2.401 0.232 4.722
GROS may not be used when degrees and stributed detected data, B' Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	lata set has > 50% t ts is small such as ROS method may y especially true wher TVs and UCLs may 0.0028 11.8 2.636 0.234 4.7 14.48	NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) vield incorrect values of UCLs and BTVs In the sample size is small. v be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	1.098 0.0124 2.401 0.232 4.722 14.41
GROS may not be used when degrees and stributed detected data, B' Minimum Maximum SD k hat (MLE) Theta hat (MLE) Adjusted Level of Significance (β)	lata set has > 50% t ts is small such as ROS method may y especially true wher TVs and UCLs may 0.0028 11.8 2.636 0.234 4.7 14.48 0.0413	NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) rield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected)	0.0124 2.401 0.232 4.722 14.41

$\label{eq:prouch} \textbf{ProUCL Output for Polycyclic Aromatic Hydrocarbons (PAHs) in Soil}$

Estimat	es of Gamma Par	ameters using KM Estimates	
Mean (KM)	1.096	SD (KM)	2.594
Variance (KM)	6.729	SE of Mean (KM)	0.477
k hat (KM)	0.179	k star (KM)	0.183
nu hat (KM)	11.07	nu star (KM)	11.33
theta hat (KM)	6.139	theta star (KM)	5.997
80% gamma percentile (KM)	1.373	90% gamma percentile (KM)	3.308
95% gamma percentile (KM)	5.777	99% gamma percentile (KM)	12.68
	Oamma Kanlan A	Inter (IAI) Obstalen	
Approximate Chi Square Value (11.33, α)	4.79	Heler (KM) Statistics Adjusted Chi Square Value (11.33, β)	4.555
95% Gamma Approximate KM-UCL (use when n>=50)	2.593	95% Gamma Adjusted KM-UCL (use when n<50)	2.727
33% daimia Approximate NVI-33E (use Whem is -30)	2.000	30% Camina Adjusted Net-OCE (use when 11130)	2.727
Logno	rmal GOF Test on	Detected Observations Only	
Shapiro Wilk Test Statistic	0.915	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.911	Detected Data appear Lognormal at 5% Significance Lev	el
Lilliefors Test Statistic	0.149	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.184	Detected Data appear Lognormal at 5% Significance Lev	el
Detected	Data appear Log	normal at 5% Significance Level	
Lognor	mal ROS Statistics	Using Imputed Non-Detects	
Mean in Original Scale	1.096	Mean in Log Scale	-3.272
SD in Original Scale	2.637	SD in Log Scale	2.814
95% t UCL (assumes normality of ROS data)	1.9	95% Percentile Bootstrap UCL	1.904
95% BCA Bootstrap UCL	2.203	95% Bootstrap t UCL	2.574
95% H-UCL (Log ROS)	27.15		
•		od Data and Assuming Lognormal Distribution	
KM Mean (logged)	-3.256	KM Geo Mean	0.0386
KM SD (logged)	2.758	95% Critical H Value (KM-Log)	4.998
KM Standard Error of Mean (logged)	0.509	95% H-UCL (KM -Log)	21.43
KM SD (logged) KM Standard Error of Mean (logged)	2.758 0.509	95% Critical H Value (KM-Log)	4.998
TWO Claimaded Error of Michael (1099904)	0.000		
	DL/2 S	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	1.096	Mean in Log Scale	-3.284
SD in Original Scale	2.637	SD in Log Scale	2.824
95% t UCL (Assumes normality)	1.9	95% H-Stat UCL	28.1
DL/2 is not a recomm	ended method, p	rovided for comparisons and historical reasons	
		ution Free UCL Statistics Gamma Distributed at 5% Significance Level	
ревоской рага арр	ear Approximate	Salillia Distributed at 5 % Significance Level	
	Suggested	UCL to Use	
Gamma Adjusted KM-UCL (use when k<=1 and 15 < n < 50 but			
k<=1)			
	<u>ı</u>	L	
When a data set follows an a	approximate (e.g., n	ormal) distribution passing one of the GOF test	
When applicable, it is suggested to use a	JCL based upon a c	istribution (e.g., gamma) passing both GOF tests in ProUCL	
***		wided to help the user to select the most appropriate 95% UCL.	
		a size, data distribution, and skewness.	
		ulation studies summarized in Singh, Maichle, and Lee (2006).	
nowever, simulations results will not cover all	i vedi vvoi iu uala se	ts; for additional insight the user may want to consult a statistician.	

APHTHALENE			
	General Stati	stics	
Total Number of Observations	31	Number of Distinct Observations	2
Number of Detects	9	Number of Non-Detects	2
Number of Distinct Detects	9	Number of Distinct Non-Detects	1
Minimum Detect	0.00491	Minimum Non-Detect	0.021
Maximum Detect	4.68	Maximum Non-Detect	0.025
Variance Detects	2.382	Percent Non-Detects	70.97%
Mean Detects	0.573	SD Detects	1.54
Median Detects	0.0141	CV Detects	2.69
Skewness Detects	2.976	Kurtosis Detects	8.88
Mean of Logged Detects	-3.234	SD of Logged Detects	2.21
No.	rmal GOF Test on	Detects Only	
Shapiro Wilk Test Statistic	0.432	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.829	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.454	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.274	Detected Data Not Normal at 5% Significance Level	
Detected [Data Not Normal a	t 5% Significance Level	
Kaplan-Meler (KM) Statistics	using Normal Cri	tical Values and other Nonparametric UCLs	
KM Mean	0.173	KM Standard Error of Mean	0.157
KM SD	0.825	95% KM (BCA) UCL	0.472
95% KM (t) UCL	0.44	95% KM (Percentile Bootstrap) UCL	0.467
95% KM (z) UCL	0.431	95% KM Bootstrap t UCL	11.24
90% KM Chebyshev UCL	0.644	95% KM Chebyshev UCL	0.858
97.5% KM Chebyshev UCL	1.154	99% KM Chebyshev UCL	1.736
· L			
		ted Observations Only	
A-D Test Statistic	1.346 0.822	Anderson-Darling GOF Test	· al
5% A-D Critical Value K-S Test Statistic	0.822	Detected Data Not Gamma Distributed at 5% Significance Lev Kolmogorov-Smirnov GOF	vei
5% K-S Critical Value	0.304	Detected Data Not Gamma Distributed at 5% Significance Lev	vol
		uted at 5% Significance Level	VCI
Doubling Page 1	Tot Gailling Distrib	awa ato w oigiiiiloanoo Eovoi	
Gamn	na Statistics on De	tected Data Only	
Gamm k hat (MLE)	na Statistics on De	tected Data Only k star (bias corrected MLE)	0.25
		· · · · · · · · · · · · · · · · · · ·	
k hat (MLE)	0.263	k star (bias corrected MLE)	2.296
k hat (MLE) Theta hat (MLE)	0.263 2.177	k star (bias corrected MLE) Theta star (bias corrected MLE)	2.296
k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	0.263 2.177 4.737 0.573	k star (bias corrected MLE) Theta star (bias corrected MLE)	2.296
k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R	0.263 2.177 4.737 0.573	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	2.296
k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data	0.263 2.177 4.737 0.573 OS Statistics using set has > 50% NDs	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects	2.296
k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is	0.263 2.177 4.737 0.573 OS Statistics using set has > 50% NDs small such as <1.0	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs	2.296
k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS	0.263 2.177 4.737 0.573 OS Statistics using set has > 50% NDs s small such as <1.0. S method may yield it	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20)	2.296
k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe	0.263 2.177 4.737 0.573 OS Statistics using set has > 50% NDs small such as <1.0, 6 method may yield icially true when the scale in th	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs	2.296
k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe	0.263 2.177 4.737 0.573 OS Statistics using set has > 50% NDs small such as <1.0, 6 method may yield icially true when the scale in th	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small.	2.296
k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs	0.263 2.177 4.737 0.573 CS Statistics using set has > 50% NDs s small such as <1.0 S method may yield icially true when the and UCLs may be of and UCLs may be of and UCLs may be of a set of the set	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small.	2.296 4.49°
k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gemma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum	0.263 2.177 4.737 0.573 OS Statistics using set has > 50% NDs small such as <1.0 Smethod may yield icially true when the and UCLs may be conducted to 0.00491	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean	2.29(4.49) 0.17:
k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data: GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum	0.263 2.177 4.737 0.573 OS Statistics using set has > 50% NDs small such as <1.0 Smethod may yield icially true when the and UCLs may be conducted to 0.00491 4.68	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median	2.29(4.49) 0.173 0.00 4.838
k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum SD	0.263 2.177 4.737 0.573 OS Statistics using set has > 50% NDs small such as <1.0 Smethod may yield icially true when the and UCLs may be concept to 0.00491 4.68 0.838	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median CV	2.29(4.49) 0.17; 0.00 4.83; 0.278
k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum SD k hat (MLE)	0.263 2.177 4.737 0.573 OS Statistics using set has > 50% NDs small such as <1.0 method may yield icially true when the small UCLs may be conducted and UCLs may be conducted	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.173 0.01 4.835 0.276 0.625
k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum SD k hat (MLE) Theta hat (MLE)	0.263 2.177 4.737 0.573 OS Statistics using set has > 50% NDs small such as <1.0, 6 method may yield icially true when the cand UCLs may be of 0.00491 4.68 0.838 0.283 0.612	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.173 0.01 4.835 0.276 0.625
k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma R GROS may not be used when data GROS may not be used when kstar of detects is For such situations, GROS This is espe For gamma distributed detected data, BTVs Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.263 2.177 4.737 0.573 OS Statistics using set has > 50% NDs small such as <1.0, 6 method may yield icially true when the and UCLs may be of 0.00491 4.68 0.838 0.283 0.612 17.58	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) Imputed Non-Detects with many tied observations at multiple DLs , especially when the sample size is small (e.g., <15-20) incorrect values of UCLs and BTVs sample size is small. computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.25 2.296 4.491 0.173 0.01 4.835 0.625 17.21

$\label{eq:prouch} \textbf{ProUCL Output for Polycyclic Aromatic Hydrocarbons (PAHs) in Soil}$

Estimat	es of Gamma Par	ameters using KM Estimates	
Mean (KM)	0.173	SD (KM)	0.825
Variance (KM)	0.68	SE of Mean (KM)	0.157
k hat (KM)	0.044	k star (KM)	0.0612
nu hat (KM)	2.728	nu star (KM)	3.797
theta hat (KM)	3.932	theta star (KM)	2.825
80% gamma percentile (KM)	0.0442	90% gamma percentile (KM)	0.332
95% gamma percentile (KM)	0.974	99% gamma percentile (KM)	3.459
	Gamma Kaplan-N 0.643	Aeler (KM) Statistics	0.578
Approximate Chi Square Value (3.80, α) 95% Gamma Approximate KM-UCL (use when n>=50)	1.021	Adjusted Chi Square Value (3.80, β) 95% Gamma Adjusted KM-UCL (use when n<50)	1.136
		(use when k<=1 and 15 < n < 50)	1.130
30% damma	Tajubica Tivi OOL	(acc when the first to the cost	
Logno	rmal GOF Test on	Detected Observations Only	
Shapiro Wilk Test Statistic	0.848	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.829	Detected Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.234	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.274	Detected Data appear Lognormal at 5% Significance Level	
Detected	Data appear Log	normal at 5% Significance Level	
Lognor	mal ROS Statistic	s Using Imputed Non-Detects	
Mean in Original Scale	0.174	Mean in Log Scale	-4.212
SD in Original Scale	0.838	SD in Log Scale	1.368
95% t UCL (assumes normality of ROS data)	0.43	95% Percentile Bootstrap UCL	0.475
95% BCA Bootstrap UCL	0.626	95% Bootstrap t UCL	13.39
95% H-UCL (Log ROS)	0.0778		
Statistics using KM as	etimates on Logge	ed Data and Assuming Lognormal Distribution	
KM Mean (logged)	-4.294	KM Geo Mean	0.0136
KM SD (logged)	1.35	95% Critical H Value (KM-Log)	2.87
KM Standard Error of Mean (logged)	0.291	95% H-UCL (KM -Log)	0.0689
KM SD (logged)	1.35	95% Critical H Value (KM-Log)	2.87
KM Standard Error of Mean (logged)	0.291	55% Children III Valide (I div 269)	2.07
, 55 /			
	DL/2 S	tatistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	0.174	Mean in Log Scale	-4.108
SD in Original Scale	0.838	SD in Log Scale	1.278
95% t UCL (Assumes normality)	0.43	95% H-Stat UCL	0.0711
DL/2 is not a recomm	ended method, p	provided for comparisons and historical reasons	
Non	no so motelo Distelle	widen Eree LICI Stedeler	
		outlon Free UCL Statistics nal Distributed at 5% Significance Level	
	appear Logitoni	indi bishibaba ato A diginilarito 2010i	
	Suggested	I UCL to Use	
97.5% KM (Chebyshev) UCL	1.154		
,			
Note: Suggestions regarding the selection of	a 95% UCL are pro	ovided to help the user to select the most appropriate 95% UCL.	
Recommendations	are based upon data	a size, data distribution, and skewness.	
These recommendations are based upon the	e results of the sim	ulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all	Real World data se	ets; for additional insight the user may want to consult a statistician.	

METHYLNAPHTHALENE			
	General S	Statistics	
Total Number of Observations	31	Number of Distinct Observations	2
Number of Detects	5	Number of Non-Detects	2
Number of Distinct Detects	5	Number of Distinct Non-Detects	1
Minimum Detect	0.0106	Minimum Non-Detect	0.021
Maximum Detect	0.0762	Maximum Non-Detect	0.21
Variance Detects	7.9088E-4	Percent Non-Detects	83.87
Mean Detects	0.0261	SD Detects	0.028
Median Detects	0.0162	CV Detects	1.07
Skewness Detects	2.181	Kurtosis Detects	4.80
Mean of Logged Detects	-3.969	SD of Logged Detects	0.8
	Normal GOF Test	t on Detects Only	
Shapiro Wilk Test Statistic	0.638	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.433	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.343	Detected Data Not Normal at 5% Significance Level	
Detecte	d Data Not Norm	al at 5% Significance Level	
Kaplan-Meler (KM) Statis	tics using Normal	Critical Values and other Nonparametric UCLs	
KM Mean	0.0157	KM Standard Error of Mean	0.0027
KM SD	0.0116	95% KM (BCA) UCL	0.020
95% KM (t) UCL	0.0204	95% KM (Percentile Bootstrap) UCL	0.020
95% KM (z) UCL	0.0202	95% KM Bootstrap t UCL	0.022
90% KM Chebyshev UCL	0.0239	95% KM Chebyshev UCL	0.027
97.5% KM Chebyshev UCL	0.0328	99% KM Chebyshev UCL	0.04
37.370 KIVI CHEDYSHEV UCL	0.0020	99% KIVI Chebyshev UCL	0.04
,		·	0.04
Gamma	a GOF Tests on De	etected Observations Only	0.04
Gamma A-D Test Statistic	a GOF Tests on De	etected Observations Only Anderson-Darling GOF Test	
Gamma A-D Test Statistic 5% A-D Critical Value	0.834 0.686	etected Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L	
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	0.834 0.686	etected Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.834 0.686 0.411 0.361	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.834 0.686 0.411 0.361	etected Observations Only Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date	0.834 0.686 0.411 0.361 0.410	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date	0.834 0.686 0.411 0.361 0.410	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Ga	0.834 0.686 0.411 0.361 ba Not Gamma Dis	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE)	0.834 0.686 0.411 0.361 ta Not Gamma Dis	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE)	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE)	0.834 0.686 0.411 0.361 ta Not Gamma Dis	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	0.834 0.686 0.411 0.361 ta Not Gamma Dis mma Statistics on 1.689 0.0155 16.89	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	0.834 0.686 0.411 0.361 ta Not Gamma Dis mma Statistics on 1.689 0.0155 16.89 0.0261	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level I Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when dat	0.834 0.686 0.411 0.361 ta Not Gamma Dis 0.0155 16.89 0.0261 a ROS Statistics us ata set has > 50% N	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when kstar of detects	0.834 0.686 0.411 0.361 ta Not Gamma Dis 0.0155 16.89 0.0261 a ROS Statistics us at a set has > 50% N s is small such as e	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when kstar of detect For such situations, GR	0.834 0.686 0.411 0.361 ba Not Gamma Dis 0.0155 16.89 0.0261 a ROS Statistics us at set has > 50% N s is small such as <	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level I Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20)	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when kstar of detect For such situations, GF This is es	0.834 0.686 0.411 0.361 ba Not Gamma Dis mma Statistics on 1.689 0.0155 16.89 0.0261 a ROS Statistics us ata set has > 50% N s is small such as <	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when kstar of detect For such situations, GF This is es	0.834 0.686 0.411 0.361 ba Not Gamma Dis mma Statistics on 1.689 0.0155 16.89 0.0261 a ROS Statistics us ata set has > 50% N s is small such as <	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small.	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when detects For such situations, GF This is est For gamma distributed detected data, BT	0.834 0.686 0.411 0.361 ba Not Gamma Dis mma Statistics on 1.689 0.0155 16.89 0.0261 a ROS Statistics us at a set has > 50% h is is small such as s ROS method may yi specially true when rVs and UCLs may	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when dat GROS may not be used when kstar of detect For such situations, GF This is es For gamma distributed detected data, BT Minimum	0.834 0.686 0.411 0.361 ta Not Gamma Dis mma Statistics on 1.689 0.0155 16.89 0.0261 a ROS Statistics us ata set has > 50% N s is small such as a ROS method may yi specially true when IVs and UCLs may 0.01	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance I Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance I stributed at 5% Significance Level Detected Data Not Gamma Distributed at 5% Significance I to Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when dat GROS may not be used when dat GROS may not be used when kstar of detect For such situations, GF This is es For gamma distributed detected data, BT Minimum Maximum SD	0.834 0.686 0.411 0.361 10 Not Gamma Dis 1.689 0.0155 16.89 0.0261 10 ROS Statistics use at a set has > 50% Nos is is small such as a ROS method may yill specially true when IVs and UCLs may 0.01 0.0762	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level A Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects ADs with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median	.evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Dat Ga k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when dat GROS may not be used when dat GROS may not be used when kstar of detect For such situations, GF This is es For gamma distributed detected data, BT Minimum Maximum	0.834 0.686 0.411 0.361 ta Not Gamma Dis mma Statistics on 1.689 0.0155 16.89 0.0261 a ROS Statistics us ata set has > 50% N s is small such as < ROS method may yi specially true when TVs and UCLs may 0.01 0.0762 0.0118	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level A Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median CV	0.80 0.032 8.00 0.015 0.015 0.72 4.26
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when detected data, BT This is est For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE)	0.834 0.686 0.411 0.361 ta Not Gamma Dis mma Statistics on 1.689 0.0155 16.89 0.0261 a ROS Statistics us ata set has > 50% N s is small such as < ROS method may yi specially true when rVs and UCLs may 0.01 0.0762 0.0118 4.693	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level A Detected Data Only R star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.016 0.013 0.072 4.26
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when kstar of detect For such situations, GF This is es For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE) Theta hat (MLE) Theta hat (MLE)	0.834 0.686 0.411 0.361 ba Not Gamma Dis mma Statistics on 1.689 0.0155 16.89 0.0261 a ROS Statistics us ata set has > 50% N s is small such as a ROS method may yi specially true when TVs and UCLs may 0.01 0.0762 0.0118 4.693 0.00347	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	_evel
Gamma A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) GROS may not be used when kstar of detect For such situations, GF This is ee For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE) Theta hat (MLE)	0.834 0.686 0.411 0.361 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.0155 0.0261 0.802 0.0261 0.802 0.0261 0.802 0.0261 0.00261 0.00261 0.00261 0.00261 0.00261 0.00261 0.00261 0.00261 0.00261 0.00261 0.00261 0.00261	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance L Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance L stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing imputed Non-Detects NDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.86 0.032 8.08 0.016 0.013 0.72 4.26 0.0038

Estimate	s of Gamma Par	ameters using KM Estimates		
Mean (KM)	0.0157	SD (KM)	0.0116	
Variance (KM)	1.3366E-4	SE of Mean (KM)	0.00274	
k hat (KM)	1.847	k star (KM)	1.689	
nu hat (KM)	114.5	nu star (KM)	104.7	
theta hat (KM)	0.00851	theta star (KM)	0.0093	
80% gamma percentile (KM)	0.024	90% gamma percentile (KM)	0.0318	
95% gamma percentile (KM)	0.0393	99% gamma percentile (KM)	0.0562	
C	3amma Kaplan-N	Meier (KM) Statistics		
Approximate Chi Square Value (104.75, α)	82.13	Adjusted Chi Square Value (104.75, β)	81.02	
95% Gamma Approximate KM-UCL (use when n>=50)	0.02	95% Gamma Adjusted KM-UCL (use when n<50)	0.0203	
		<u> </u>		
Lognor	mal GOF Test on	Detected Observations Only		
Shapiro Wilk Test Statistic	0.762	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.364	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.343	Detected Data Not Lognormal at 5% Significance Level		
Detected	d Data Not Logno	ormal at 5% Significance Level		
Lognorr		s Using Imputed Non-Detects		
Mean in Original Scale	0.0164	Mean in Log Scale	-4.208	
SD in Original Scale	0.0115	SD in Log Scale	0.366	
95% t UCL (assumes normality of ROS data)	0.0199	95% Percentile Bootstrap UCL	0.0203	
95% BCA Bootstrap UCL	0.0227	95% Bootstrap t UCL	0.0273	
95% H-UCL (Log ROS)	0.018			
·		ed Data and Assuming Lognormal Distribution		
KM Mean (logged)	-4.259	KM Geo Mean	0.0141	
KM SD (logged)	0.373	95% Critical H Value (KM-Log)	1.838	
KM Standard Error of Mean (logged)	0.129	95% H-UCL (KM -Log)	0.0172	
KM SD (logged)	0.373 0.129	95% Critical H Value (KM-Log)	1.838	
KM Standard Error of Mean (logged)	0.129			
	DL/2 S	tatietice		
DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	0.017	Mean in Log Scale	-4.314	
SD in Original Scale	0.0204	SD in Log Scale	0.522	
95% t UCL (Assumes normality)	0.0232	95% H-Stat UCL	0.0185	
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	ended method, p	rovided for comparisons and historical reasons		
Nonp	arametric Distrib	ution Free UCL Statistics		
Data do not fol	llow a Discernible	Distribution at 5% Significance Level		
	Suggested	UCL to Use		
95% KM (Chebyshev) UCL	0.0277			
Note: Suggestions regarding the selection of	a 95% UCL are pro	ovided to help the user to select the most appropriate 95% UCL.		
Recommendations a	are based upon data	a size, data distribution, and skewness.		
These recommendations are based upon the	e results of the sim	ulation studies summarized in Singh, Maichle, and Lee (2006).		
However, simulations results will not cover all F	Real World data se	ts; for additional insight the user may want to consult a statistician.		

METHYLNAPHTHALENE			
	General S		
Total Number of Observations	31	Number of Distinct Observations	2
Number of Detects	5	Number of Non-Detects	2
Number of Distinct Detects	5	Number of Distinct Non-Detects	1
Minimum Detect	0.0133	Minimum Non-Detect	0.021
Maximum Detect Variance Detects	0.11	Maximum Non-Detect	0.21 83.87
Variance Detects Mean Detects	0.00168	Percent Non-Detects	
Median Detects Median Detects	0.0369	SD Detects CV Detects	0.04
Skewness Detects	2,203	CV Detects Kurtosis Detects	4.88
	-3.643		0.82
Mean of Logged Detects	-3.043	SD of Logged Detects	0.04
	Normal GOF Test	-	
Shapiro Wilk Test Statistic	0.624	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.446	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.343	Detected Data Not Normal at 5% Significance Level	
Detected	d Data Not Norma	al at 5% Significance Level	
Kaplan-Meier (KM) Statisti	ics using Normal	Critical Values and other Nonparametric UCLs	
KM Mean	0.0212	KM Standard Error of Mean	0.0037
KM SD	0.0168	95% KM (BCA) UCL	0.027
95% KM (t) UCL	0.0276	95% KM (Percentile Bootstrap) UCL	0.027
95% KM (z) UCL	0.0274	95% KM Bootstrap t UCL	0.03
90% KM Chebyshev UCL	0.0325	95% KM Chebyshev UCL	0.037
97.5% KM Chebyshev UCL	0.0448	99% KM Chebyshev UCL	0.058
Gamma	GOF Tests on De	etected Observations Only	
Gamma A-D Test Statistic	GOF Tests on De	otected Observations Only Anderson-Darling GOF Test	
		<u> </u>	evel
A-D Test Statistic	0.917	Anderson-Darling GOF Test	evel
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.917 0.686 0.437 0.361	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le	
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.917 0.686 0.437 0.361	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF	
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date	0.917 0.686 0.437 0.361 a Not Gamma Dis	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le	
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date	0.917 0.686 0.437 0.361 a Not Gamma Dis	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le tributed at 5% Significance Level	evel
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Gar k hat (MLE)	0.917 0.686 0.437 0.361 a Not Gamma Dis	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE)	evel 0.77
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Gar	0.917 0.686 0.437 0.361 a Not Gamma Dis	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le stributed at 5% Significance Level Detected Data Only	0.77 0.043
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Gar k hat (MLE) Theta hat (MLE)	0.917 0.686 0.437 0.361 a Not Gamma Dis mma Statistics on 1.606 0.023	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	0.7 0.04
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Ger k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	0.917 0.686 0.437 0.361 a Not Gamma Dis mma Statistics on 1.606 0.023 16.06 0.0369	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.77 0.043
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Ger k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects)	0.917 0.686 0.437 0.361 a Not Gamma Dissemma Statistics on 1.606 0.023 16.06 0.0369	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.77 0.047
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when date	0.917 0.686 0.437 0.361 a Not Gamma Dis mma Statistics on 1.606 0.023 16.06 0.0369 ROS Statistics us tta set has > 50% N	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects Des with many tied observations at multiple DLs	0.77 0.047
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Gar k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when kstar of detects	0.917 0.686 0.437 0.361 a Not Gamma Dis mma Statistics on 1.606 0.023 16.06 0.0369 ROS Statistics us ta set has > 50% N s is small such as <	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lo Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lo stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects Des with many tied observations at multiple DLs 11.0, especially when the sample size is small (e.g., <15-20)	0.77 0.047
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Gar k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gemma GROS may not be used when da GROS may not be used when kstar of detects For such situations, GR	0.917 0.686 0.437 0.361 a Not Gamma Dis mma Statistics on 1.606 0.023 16.06 0.0369 ROS Statistics us tta set has > 50% N s is small such as <	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le Aributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) In ustar (bias corrected) Sing Imputed Non-Detects IDs with many ited observations at multiple DLs \$1.0, especially when the sample size is small (e.g., <15-20) eld incorrect values of UCLs and BTVs	0.77 0.047
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Garr k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when da GROS may not be used when kstar of detects For such situations, GR This is es	0.917 0.686 0.437 0.361 a Not Gamma Dis mma Statistics on 1.606 0.023 16.06 0.0369 ROS Statistics us tta set has > 50% N s is small such as < OS method may yic	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le Aributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects IDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) eld incorrect values of UCLs and BTVs the sample size is small.	0.77 0.047
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Gar k hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when da GROS may not be used when kstar of detects For such situations, GR This is es	0.917 0.686 0.437 0.361 a Not Gamma Dis mma Statistics on 1.606 0.023 16.06 0.0369 ROS Statistics us tata set has > 50% N s is small such as < OS method may yie specially true when to	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le Aributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Sing Imputed Non-Detects IDs with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) eld incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates	0.77 0.047 7.75
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Detected Date R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when da GROS may not be used when kstar of detects For such situations, GR This is es For gamma distributed detected data, BT	0.917 0.686 0.437 0.361 a Not Gamma Dis mma Statistics on 1.606 0.023 16.06 0.0369 ROS Statistics us tta set has > 50% N s is small such as < OS method may yic	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le Aributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) sing Imputed Non-Detects IDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) eld incorrect values of UCLs and BTVs the sample size is small.	0.77 0.047 7.75
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Detected Date R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when da GROS may not be used when das GROS may not be used when das GROS may not be used when das GROS may not be used detected data, BT Minimum	0.917 0.686 0.437 0.361 a Not Gamma Dis mma Statistics on 1.606 0.023 16.06 0.0369 ROS Statistics us ta set has > 50% N s is small such as < OS method may yid pecially true when to Vs and UCLs may to	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lo Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lo stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) string imputed Non-Detects IDs with many tied observations at multiple DLs c1.0, especially when the sample size is small (e.g., <15-20) eld incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean	0.77 0.047 7.75 0.018
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Detected Date R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when da GROS may not be used when kstar of detects For such situations, GR This is es For gamma distributed detected data, BTO Minimum Maximum SD	0.917 0.686 0.437 0.361 a Not Gamma Dis mma Statistics on 1.606 0.023 16.06 0.0369 ROS Statistics us ta set has > 50% N s is small such as < OS method may yie specially true when to Vs and UCLs may to 0.01 0.011	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lo Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lo stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) string imputed Non-Detects IDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) eld incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median	0.77 0.047 7.75 0.019 0.019
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Detected Date R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when da GROS may not be used when da GROS may not be used when kstar of detects For such situations, GR This is es For gamma distributed detected data, BT Minimum Maximum	0.917 0.686 0.437 0.361 a Not Gamma Dis mma Statistics on 1.606 0.023 16.06 0.0369 ROS Statistics us ta set has > 50% N s is small such as < OS method may yie specially true when to Vs and UCLs may to 0.01 0.11 0.0175	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lo Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lo Stributed at 5% Significance Level Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) Sing Imputed Non-Detects IDs with many tied observations at multiple DLs <1.0, especially when the sample size is small (e.g., <15-20) eld incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.77 0.047 7.75 0.019 0.019 0.99
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Detected Date R hat (MLE) Theta hat (MLE) nu hat (MLE) Mean (detects) Gamma GROS may not be used when data GROS may not be used when data GROS may not be used when kstar of detects For such situations, GR This is es For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE) Theta hat (MLE)	0.917 0.686 0.437 0.361 a Not Gamma Dis mma Statistics on 1.606 0.023 16.06 0.0369 ROS Statistics us tta set has > 50% N s is small such as < OS method may yid pecially true when t Vs and UCLs may I 0.01 0.11 0.0175 3.444	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Le Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Le stributed at 5% Significance Level Detected Data Noty Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) In star (bias corrected) String Imputed Non-Detects In sepecially when the sample size is small (e.g., <15-20) and in sepecially when the sample size is small (e.g., <15-20) and in sepecially when the sample size is small (e.g., <15-20) and in sepecially when the sample size is small (e.g., <15-20) Restar (bias corrected) Mean Median CV	0.77 0.047 7.75 0.015 0.015 0.90 3.13
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Data Rear k hat (MLE) Theta hat (MLE) Inu hat (MLE) Mean (detects) Gamma GROS may not be used when data GROS may not be used when data GROS may not be used when kstar of detects For such situations, GR This is es For gamma distributed detected data, BT Minimum Maximum SD k hat (MLE)	0.917 0.686 0.437 0.361 a Not Gamma Dis mma Statistics on 1.606 0.023 16.06 0.0369 ROS Statistics us tta set has > 50% N s is small such as < OS method may yie pecially true when to Vs and UCLs may to 0.01 0.11 0.0175 3.444 0.00561	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lo Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lo Aributed at 5% Significance Level Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) IDs with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) eld incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.77 0.047
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected Date Detected Date R hat (MLE) Theta hat (MLE) Mean (detects) Gamma GROS may not be used when dated share of detects For such situations, GR This is est For gamma distributed detected data, BTO Maximum Maximum SD k hat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE)	0.917 0.686 0.437 0.361 a Not Gamma Dis mma Statistics on 1.606 0.023 16.06 0.0369 ROS Statistics us tta set has > 50% N s is small such as < OS method may yie specially true when to Vs and UCLs may to 0.01 0.11 0.0175 3.444 0.00561 213.5	Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Lo Kolmogorov-Smirnov GOF Detected Data Not Gamma Distributed at 5% Significance Lo Aributed at 5% Significance Level Detected Data Only Restar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) IDs with many tied observations at multiple DLs 1.0, especially when the sample size is small (e.g., <15-20) eld incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	0.77 0.047 7.75 0.015 0.015 0.90 3.13

Estimate	s of Gamma Par	ameters using KM Estimates		
Mean (KM)	0.0212	SD (KM)	0.0168	
Variance (KM)	2.8171E-4	SE of Mean (KM)	0.00379	
k hat (KM)	1.588	k star (KM)	1.456	
nu hat (KM)	98.46	nu star (KM)	90.27	
theta hat (KM)	0.0133	theta star (KM)	A) 0.0145	
80% gamma percentile (KM)	0.0328	90% gamma percentile (KM)	0.044	
95% gamma percentile (KM)	0.0557	99% gamma percentile (KM)	0.0811	
	Gamma Kaplan-N	Meier (KM) Statistics		
Approximate Chi Square Value (90.27, α)	69.36	Adjusted Chi Square Value (90.27, β)	68.34	
95% Gamma Approximate KM-UCL (use when n>=50)	0.0275	95% Gamma Adjusted KM-UCL (use when n<50)	0.0279	
Lognor	mal GOF Test on	Detected Observations Only		
Shapiro Wilk Test Statistic	0.751	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.762	Detected Data Not Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.394	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.343	Detected Data Not Lognormal at 5% Significance Level		
Detecte	d Data Not Logno	ormal at 5% Significance Level		
		s Using Imputed Non-Detects		
Mean in Original Scale	0.0213	Mean in Log Scale	-3.959	
SD in Original Scale	0.0168	SD in Log Scale	0.373	
95% t UCL (assumes normality of ROS data)	0.0264	95% Percentile Bootstrap UCL	0.0271	
95% BCA Bootstrap UCL	0.0308	95% Bootstrap t UCL	0.0404	
95% H-UCL (Log ROS)	0.0232			
		ed Data and Assuming Lognormal Distribution		
KM Mean (logged)	-3.969	KM Geo Mean	0.0189	
KM SD (logged)	0.376	95% Critical H Value (KM-Log)	1.84	
KM Standard Error of Mean (logged)	0.125	95% H-UCL (KM -Log)	0.023	
KM Standard France (Mannell)	0.376 0.125	95% Critical H Value (KM-Log)	1.84	
KM Standard Error of Mean (logged)	0.125			
	DL/2 S	tatietice		
DL/2 Normal	DLIZG	DL/2 Log-Transformed		
Mean in Original Scale	0.0187	Mean in Log Scale	-4.262	
SD in Original Scale	0.0242	SD in Log Scale	0.574	
95% t UCL (Assumes normality)	0.0242	95% H-Stat UCL	0.0205	
· ` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		rovided for comparisons and historical reasons		
	,,			
None	arametric Distrib	oution Free UCL Statistics		
•		e Distribution at 5% Significance Level		
		·		
	Suggested	UCL to Use		
95% KM (Chebyshev) UCL	0.0377			
Note: Suggestions regarding the selection of	a 95% UCL are pro	ovided to help the user to select the most appropriate 95% UCL.		
Recommendations	are based upon data	a size, data distribution, and skewness.		
These recommendations are based upon the	e results of the sim	ulation studies summarized in Singh, Maichle, and Lee (2006).		
However, simulations results will not cover all	Real World data se	ts; for additional insight the user may want to consult a statistician.		
However, simulations results will not cover all	Real World data se	ts; for additional insight the user may want to consult a statistician.		

APPENDIX C

FIELD DATASHEETS

PROJECT NUMBER AND TASK: 01-POG-001 Task:2.2

BORING NUMBER: EM:34 GPS COORDINATES: 36*59*33.03*N 122*2*10.96*W LOCATION ON SITE East Meadow visible?			OLU	LOGGED & SAMPLED BY:	B. Angulo		DATE: 8/3/21	
Soil Description Lead shot visible?								
1245 0	BORIN	G NUI		EM-34 GPS COORDINATES: 36°59'33.03"N 122°2'10.96"W	LOCATION ON SITE: E	ast Meadow	TIME:	1230
1245 0	e e	ŧ	ple	6.15		Lead shot	XRF Ana	lysis
1240 0.5	Ë		Sam	·		visible?	Lead Conc. (ppm)	Sample #
1.0	1245	0	\times	(SM) Silty sand, brown (10YR 5/3), moist, very loose, fine-grained sand, non	-plastic, no odor.	NO	687	AUG 02-44
1250 1.5		0.5				NO	784	AUG 02-45
Solid Description Continue of the continue		1.0				NO	48	AUG 02-46
BORING NUMBER: EM-35 GPS COORDINATES: 36*59*32.50*N 122*2*10.30*W LOCATION ON SITE: East Meadow visible? Constitution	1250	1.5	X			NO	56	AUG 02-47
BORING NUMBER: EM-35 GPS COORDINATES: 36°59°32.50°N 122°2°10.30°W LOCATION ON SITE: East Meadow visible? Part		2.0						
BORING NUMBER: EM-35 GPS COORDINATES: 36°59'32.50°N 122°2'10.30°W LOCATION ON SITE East Meadow Lead shot visible? Part Part		2.5						
Soil Description Lead shot visible? 1340 0		3.0						
Soil Description Lead shot visible? 1340 0	OBIN	G NIIII	MDED.	EM 25	LOCATION ON SITE.	Fort Monday	TIME:	1325
1340 0 (SM) Silty sand, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, non-plastic, no odor. NO NO NO NO NO NO NO N				EIVI-35 GF3 COORDINATES: 30 39 32.30 IN 122 2 10.30 W	LOCATION ON SITE: E	ast Meadow	XRF Ana	
1340 0	Time	Depth	Sample Interva	Soil Description			Lead Conc.	Sample #
NO NO NO NO NO NO NO NO	1340	0	X		, non-plastic, no	NO	1,822 1,631	AUG 02-52 AUG 02-53
NO		0.5				NO	485	AUG 02-54
Soil Description Soil Description Soil Description NO		1.0				NO	48	AUG 02-55
2.5 End of boring at 2 feet bgs.	1345	1.5	X			NO	147	AUG 02-56
BORING NUMBER: EM-36 GPS COORDINATES: 36°59'32.00"N 122°2'9.99"W LOCATION ON SITE: East Meadow BORING NUMBER: EM-36 GPS COORDINATES: 36°59'32.00"N 122°2'9.99"W LOCATION ON SITE: East Meadow Soil Description Lead shot visible? 1215 0 (SM) Silty sand, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, non plastic, no odor. NO 1220 1.5 NO 2.5 End of boring at 2 feet bgs.		2.0						
BORING NUMBER: EM-36 GPS COORDINATES: 36°59'32.00"N 122°2'9.99"W LOCATION ON SITE: East Meadow Lead shot visible? Soil Description NO (SM) Silty sand, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, non plastic, no odor. NO 1220 1.5 2.5 End of boring at 2 feet bgs.		2.5						
Soil Description Lead shot visible? 1215 0 (SM) Silty sand, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, non plastic, no odor. NO 1.0 1.0 2.0 End of boring at 2 feet bgs.		3.0						
Soil Description Lead shot visible? 1215 0 (SM) Silty sand, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, non plastic, no odor. NO 1.0 1.0 1.20 1.5 End of boring at 2 feet bgs.			•					
1215 0 (SM) Silty sand, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, non plastic, no odor. NO NO 1.0 1.20 2.5 End of boring at 2 feet bgs.	BORIN			EM-36 GPS COORDINATES: 36°59'32.00"N 122°2'9.99"W	LOCATION ON SITE: E	ast Meadow	TIME:	1200
1215 0 (SM) Silty sand, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, non plastic, no odor. NO NO 1.0 1.20 2.5 End of boring at 2 feet bgs.	a B	pth	nple	Soil Description			XRF Ana Lead Conc.	Ī
1215	F	ڡۜ	Sar			visible?	(ppm)	Sample #
1.0 NO NO NO 2.0 End of boring at 2 feet bgs.	1215	0	X		l, non plastic, no	NO	1,572 1,579	AUG 02-38 AUG 02-39
1220 1.5 NO NO 2.0 End of boring at 2 feet bgs.		0.5				NO	78	AUG 02-40
2.0 NO		1.0				NO	25	AUG 02-41
2.5 End of boring at 2 feet bgs.	1220	1.5	X			NO	64	AUG 02-42
		2.0						
		2.5						
3.0		3.0		5				

PROJECT NUMBER AND TASK: 01-POG-001 Task:2.2

BORIN	IG NUI	MBER:	EM-37 GPS COORDINATES: 36°59'31.22"N 122°2'9.90"W	LOCATION ON SITE: E	ast Meadow	TIME:	1053
Φ	£	ole ral			Lead shot	XRF Ana	alysis
Time	Depth	Sample Interval	Soil Description		visible?	Lead Conc. (ppm)	Sample #
1115	0	\times	(SW) Well graded sand, grayish brown (10YR 5/2), dry, very loose, fine-grain plastic, no odor.	ed sand, non-	NO	955 725	AUG 02-32 AUG 02-33
	0.5				NO	83	AUG 02-34
	1.0				NO	39	AUG 02-35
1120	1.5	\times			NO	13	AUG 02-36
	2.0						
	2.5		End of boring at 2 feet bgs. Backfill boring with soil cuttings.				
	3.0		backiiii boffing with son cuttings.				
BORIN	IG NUI	MBER:	EM-38 GPS COORDINATES: 36°59'30.46"N 122°2'9.32"W	LOCATION ON SITE: E	ast Meadow	TIME:	1014
						XRF Ana	
Time	Depth	Sample Interval	Soil Description		Lead shot visible?	Lead Conc. (ppm)	Sample #
1045	0	X	(SW) Well graded sand with gravel, grayish brown (10YR 5/2), dry, very loose sand, coarse gravel, non-plastic, no odor.	e, fine-grained	NO	499	AUG 02-28
	0.5				NO	370	AUG 02-29
	1.0				NO	137	AUG 02-30
1050	1.5	\times			NO	48	AUG 02-31
	2.0						
	2.5		End of boring at 2 feet bgs. Backfill boring with soil cuttings.				
	3.0						
BORIN	IG NUI	MBER:	EM-39 GPS COORDINATES: 36°59'31.20"N 122°2'8.41"W	LOCATION ON SITE: E	ast Meadow	TIME:	0942
Φ	th	ole			Lead shot	XRF Ana	alysis
Time	Depth	Sample Interval	Soil Description		visible?	Lead Conc. (ppm)	Sample #
1005	0	\times	(SW) Well graded sand with gravel, grayish brown (10YR 5/2), dry, very loose sand, coarse gravel, non-plastic, no odor.	e, fine-grained	NO	519	AUG 02-23
	0.5				NO	214	AUG 02-24
	1.0				NO	211	AUG 02-25
1010	1.5	\times			NO	285	AUG 02-27
	2.0						
	2.5	1	End of boring at 2 feet bgs.				
	3.0		Backfill boring with soil cuttings.	<u> </u>			

PROJECT NUMBER AND TASK: 01-POG-001 Task:2.2

			LOGGED & SAMM LED DT. B. Aliguio			
BORIN	IG NUI	MBER:	EM-40 GPS COORDINATES: 36°59'30.56"N 122°2'8.14"W LOCATION ON	SITE: East Meadow	TIME:	0908
				l l l l l l l l l l l l l l l l l l l	XRF Ana	
Time	Depth	Sample Interval	Soil Description	Lead shot	Lead Conc.	ilysis
F	۵	Sar Inte		visible?	(ppm)	Sample #
0935	0	\times	(SW) Well graded sand, grayish brown (10YR 5/2), moist, very loose, fine-grained sand, medium to coarse gravel, non-plastic, no odor.	NO	245	AUG 02-19
	0.5			NO	125	AUG 02-20
	1.0			NO	18	AUG 02-21
0940	1.5	\times		NO	16	AUG 02-22
	2.0					
	2.5		End of boring at 2 feet bgs.			
	3.0		Backfill boring with soil cuttings.			
	3.0					
		'				
BORIN	IG NUI	MBER:	R-1 GPS COORDINATES: 36°59'35.38"N 122°2'14.95"W LOCATION ON	SITE: Ravine	8/4/21 TIME:	0720
е	£	ole val		Lead shot	XRF Ana	lysis
Time	Depth	Sample Interval	Soil Description	visible?	Lead Conc. (ppm)	Sample #
0745	0	X	(SM) Silty sand, grayish brown (10YR 5/2), moist, very loose, fine-grained sand, non-plast odor.	ic, no	226	AUG 02-66
	0.5			NO	57	AUG 02-67
	1.0			NO	52	AUG 02-68
0750	1.5	X		NO	131	AUG 02-69
	2.0					
	2.5		End of boring at 2 feet bgs.			
			Backfill boring with soil cuttings.			
	3.0					
		•				
BORIN	IG NUI	MBER:	R-2 GPS COORDINATES: 36°59'34.62" N 122°2'13.35"W LOCATION ON	SITE: Ravine	8/4/21 TIME:	1044
e .	ţ	ple val	6.15	Lead shot	XRF Ana	lysis
Time	Depth	Sample Interval	Soil Description	visible?	Lead Conc. (ppm)	Sample #
	0	\times	(SM) Silty sand, grayish brown (10YR 5/2), moist, loose, fine-grained sand, non-plastic, no odor.	NO	28	AUG 02-89
1055	0.5			NO	21	AUG 02-90
	1.0		Mottled with yellowish red (5YR 4/6).	NO	4	AUG 02-91
	1.5	X		NO	4	AUG 02-92
1100	2.0					
	2.5		End of boring at 2 feet bgs. Backfill boring with soil cuttings.			
	3.0		DACKTIII DOTING WITH SOII CUTTINGS.			
		<u> </u>		l	1	

PROJECT NUMBER AND TASK: 01-POG-001 Task:2.2

DODIN	C NIII	MDED	D.2		TINAE	4200
		MBER:		Ravine	TIME:	1300
Time	Depth	Sample Interval	Soil Description	Lead shot visible?	Lead Conc.	Sample #
1315	0	\times	(SM) Silty sand, brown (10YR 5/3), moist, very loose, fine-grained sand, medium coarse gravel, non-plastic, no odor.	NO	810	AUG 02-48
	0.5			NO	19	AUG 02-49
	1.0			NO	11	AUG 02-50
1320	1.5	\times		NO	12	AUG 02-51
	2.0					
	2.5		End of boring at 2 feet bgs. Backfill boring with soil cuttings.			
	3.0					
		l				
BORIN		MBER:	R-4 GPS COORDINATES: 36°59'34.52"N 122°2'14.34"W LOCATION ON SITE:	Ravine	8/4/21 TIME:	0843
Time	Depth	Sample Interval	Soil Description	Lead shot visible?	XRF Ana	Sample #
0900	0	<u> </u>	(SM) Silty sand, dark brown (10YR 3/3), moist, very loose, fine-grained sand, non-plastic, no odor.	NO	(ppm) 1,302 1,027	AUG 02-71 AUG 02-72
	0.5		ouor.	NO	73	AUG 02-72
	1.0			NO	16	AUG 02-75
0905	1.5	X		NO	16	AUG 02-76
	2.0					
	2.5		End of boring at 2 feet bgs. Backfill boring with soil cuttings.			
	3.0					
BODIN	C NIII	MDED.	R-5 GPS COORDINATES: 36°59'33.56"N 122°2'13.00"W LOCATION ON SITE:	Pavina	8/4/21 TIME:	1110
		MBER:	R-5 GF3 COORDINATES, 30 37 33,30 N 122 2 13,00 W	Lead shot	XRF Ana	
Time	Depth	Sample Interval	Soil Description	visible?	Lead Conc.	Sample #
1130	0	X	(SM) Silty sand, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, coarse gravel, non-plastic, no odor.	NO	234	AUG 02-93
	0.5			NO	49	AUG 02-94
	1.0			NO	35	AUG 02-95
1135	1.5	X		NO	18	AUG 02-96
	2.0					
	2.5		End of boring at 2 feet bgs. Backfill boring with soil cuttings.			

PROJECT NUMBER AND TASK: 01-POG-001 Task:2.2

	Sample gg Interval :3	R-6 GPS COORDINATES: 36°59'32.53"N 122°2'11.73"W Lo	OCATION ON SITE: R	avine		TIME:	1350
O Depth			OCATION ON SITE: R	avine		TIME:	1350
0	Sample Interval	Soil Description					
0	Sam			Lead shot		XRF Ana	lysis
		,		visible?		Conc. om)	Sample #
0.5	\times	(SW) Well graded sand with gravel, grayish brown (10YR 5/2), dry, very loose, sand, non-plastic, no odor.	fine-grained	NO	62	28	AUG 02-57
				NO	54	10	AUG 02-58
1.0				NO	15	55	AUG 02-59
2.0	\times			NO	29	90	AUG 02-60
2.5		End of boring at 2 feet bgs.					
		Backfill boring with soil cuttings.					
3.0							
NUN	MBER:	R-7 GPS COORDINATES: 36°59'30.97"N 122°2'10.64"W	OCATION ON SITE: R	avine	8/4/21	TIME:	1414
Dept	Samp Interv	Soil Description		visible?	Lead	Conc.	Sample #
0	\times	(SW) Well graded sand with gravel, grayish brown (10YR 5/2), dry, very loose, sand, coarse gravel, non-plastic, no odor.	fine-grained	NO	45	54	AUG 02- 113
0.5				NO	15	51	AUG 02- 114
1.0				NO	2	2	AUG 02- 115
1.5	X			NO	3	3	AUG 02- 116
2.0							
2.5		End of boring at 2 feet bgs. Backfill boring with soil cuttings.					
3.0		3					
		R-8 GPS COORDINATES: 36°59'29.35"N 122°2'10.32"W	OCATION ON SITE: R	avine			1312
pth	nple erval	Soil Description		Lead shot			1
۵	Sar Inte	,		visible?			Sample #
0		(SW) Well graded sand with gravel, grayish brown (10YR 5/2), dry, very loose, sand, coarse gravel, non-plastic, no odor. (20,80,0,0).	fine-grained	NO			AUG 02- 105
0.5				NO	7	9	AUG 02- 106
1.0	X			NO	9	8	AUG 02- 107
1.5	X			NO	9	3	AUG 02- 108
2.0							
2.5		End of boring at 2 feet bgs. Backfill boring with soil cuttings.					
3.0		Sackin borning with son cuttings.					
()	0 0.5 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 1.0 2.5 1.0 1.5 1.0 1.5 1.5 1.0 1.5 1.5 1.0 1.5 1.5 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	NUMBER: 9 and 10	NUMBER: R-7 GPS COORDINATES: 36°59'30.97"N 122°2'10.64"W (SW) Well graded sand with gravel, grayish brown (10YR 5/2), dry, very loose, sand, coarse gravel, non-plastic, no odor. End of boring at 2 feet bgs. Backfill boring with soil cuttings. NUMBER: R-8 GPS COORDINATES: 36°59'29.35"N 122°2'10.32"W Soil Description (SW) Well graded sand with gravel, grayish brown (10YR 5/2), dry, very loose, sand, coarse gravel, non-plastic, no odor. (SW) Well graded sand with gravel, grayish brown (10YR 5/2), dry, very loose, sand, coarse gravel, non-plastic, no odor. (20,80,0,0).	NUMBER: R-7 GPS COORDINATES: 36*59*30.97*N 122*2*10.64*W Soil Description	NUMBER: R-7 GPS COORDINATES: 36*59*30.97*N 122*2*10.44*W LOCATION ON SITE: Ravine Lead shot visible? Soil Description Solid Description Solid Description NO NO NO NO NO NO NO NO NO N	NUMBER: R-7 GPS COORDINATES: 36*59*30.97*N 122*2*10.64*W LOCATION ON SITE: Ravine 8/4/21 Comparison of Comparis	NUMBER: R-7 GPS COORDINATES: 36*59*30.97*N 122*2*10.64*W COCATION ON SITE Ravine 8/4/21 TIME: XRF Ana Lead Shot visible?

PROJECT NUMBER AND TASK: 01-POG-001 Task:2.2

			EGGED & SAIM LED DIT			
BORIN	IG NUI	MBFR:	R-9 GPS COORDINATES: 36°59'33.35"N 122°2'14.40"W LOCATION ON	SITE: Ravine	TIME:	0908
					XRF Ana	
Time	Depth	Sample Interval	Soil Description	Lead shot visible?	Lead Conc.	Sample #
0920	0	<u> </u>	(SM) Silty sand, dark brown (10YR 3/3), moist, very loose, fine-grained sand, non-plastic,	no NO	(ppm) 182	AUG 02-77
	0.5		odor.	NO	31	AUG 02-78
	1.0			NO	6	AUG 02-79
0925	1.5	X		NO	11	AUG 02-80
	2.0					
	2.5		End of boring at 2 feet bgs. Backfill boring with soil cuttings.			
	3.0					
BODIA	IG NUI	MDED	PAGE CONTROLLATE AVERNING SOUR ASSESSED AVERNING AVERNING SOURCE OF THE STATE OF TH	CITE. David	TIME:	0926
BOKIN	1		R-10 GPS COORDINATES: 36°59'32.29"N 122°2'13.24"W LOCATION ON	Si i E: Ravine	XRF Ana	
Time	Depth	Sample Interval	Soil Description	Lead shot visible?	Lead Conc.	Sample #
	0	s <u>-</u>	(SM) Silty sand, dark brown (10YR 3/3), moist, very loose, fine-grained sand, non-plastic, i	20	(ppm)	1
0935		\times	odor.	NO NO	86	AUG 02-81
	0.5			NO	23	AUG 02-82
	1.0			NO	5	AUG 02-83
0940	1.5	\times		NO	3	AUG 02-84
	2.0					
	2.5		End of boring at 2 feet bgs. Backfill boring with soil cuttings.			
	3.0					
BORIN	IG NUI	MRFR:	R-11 GPS COORDINATES: 36°59'31.19"N 122°2'12.33"W LOCATION ON	SITE: Ravine	TIME:	0949
	_				XRF Ana	
Time	Depth	Sample Interval	Soil Description	Lead shot visible?	Lead Conc.	Sample #
1000	0	X	(SM) Silty sand, dark brown (10YR 3/3), very loose, fine-grained sand, non-plastic, no odo	r. NO	93	AUG 02-85
	0.5			NO	18	AUG 02-86
	1.0			NO	6	AUG 02-87
1010	1.5	X		NO	20	AUG 02-88
	2.0					
	2.5		End of boring at 2 feet bgs. Backfill boring with soil cuttings.			
	3.0		Dockin Doring with son cuttings.			+
	<u>I</u>	<u> </u>	<u> </u>		L	

PROJECT NUMBER AND TASK: 01-POG-001 Task:2.2

	EN	SOLU	LOGGED & SAMPLED BY: B. Angulo		DATE: 8/4/21	
BORIN	IG NU	MBER:	R-12 GPS COORDINATES: 36°59'29.90"N 122°2'11.64"W LOCATION ON	SITE: Ravine	TIME:	1337
Ð	£	ole /al		Lead shot	XRF Ar	nalysis
Time	Depth	Sample Interval	Soil Description	visible?	Lead Conc. (ppm)	Sample #
1405	0	\times	(SW) Well graded sand with gravel, grayish brown (10YR 5/2), moist, very loose, fine-grai sand, coarse gravel, non-plastic, no odor.	ned NO	61	AUG 02-109
	0.5			NO	19	AUG 02-110
	1.0			NO	50	AUG 02-111
1410	1.5	X		NO	28	AUG 02-112
	2.0					
	2.5		End of boring at 2 feet bgs.			
	3.0		Backfill boring with soil cuttings.			
BORIN	IG NU	MBER:	R-13 GPS COORDINATES: 36°59'34.08"N 122°2'16.14"W LOCATION ON	SITE: Ravine	8/5/21 TIME:	0905
ā	ŧ	ple val		Lead shot	XRF Ar	nalysis
Time	Depth	Sample Interval	Soil Description	visible?	Lead Conc. (ppm)	Sample #
0910	0	\times	(SW) Well graded sand, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, non plastic, no odor.	NO NO	741	AUG 02-141
	0.5			NO	69	AUG 02-142
	1.0			NO	22	AUG 02-143
0915	1.5	X		NO	17	AUG 02-144
	2.0					
·	2.5		End of boring at 2 feet bgs. Backfill boring with soil cuttings.			
	3.0		Backini borning with son cuttings.			
BORIN	IG NU	MBER:		SITE: Ravine	8/5/21 TIME:	1010
Time	Depth	Sample Interval	Soil Description	Lead shot visible?	XRF Ar	Sample #
1020	0	W =	(SW) Well graded sand, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, coa	rse NO	(ppm) 1,075	AUG 02-145
	0.5		gravel, non-plastic, no odor.	NO	1,038	AUG 02-146 AUG 02-147
	1.0			NO	6	AUG 02-148
1030	1.5			NO	6	AUG 02-149
	2.0					
	2.5		End of boring at 2 feet bgs.			
	3.0		Backfill boring with soil cuttings.			
		<u></u>				

PROJECT NUMBER AND TASK: 01-POG-001 Task:2.2

BORING N BE 1 0900 0.5 1.6 0905 1.5 2.6	Sample Sample S.	Soil Description (SW) Well graded sand with gravel, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, coarse gravel, non-plastic, no odor. End of boring at 2 feet bgs. Backfill boring with soil cuttings.	Lead shot visible? NO NO NO NO	Area TIME: XRF An Lead Conc. (ppm) 19 15 11 14 14 14 14 14 14	0800 nalysis Sample # AUG 02-15 AUG 02-16 AUG 02-17 AUG 02-18
0900 0 0.5 1.0 0905 1.5	.5 .0 .0 .5 .5 .0	Soil Description (SW) Well graded sand with gravel, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, coarse gravel, non-plastic, no odor. End of boring at 2 feet bgs.	Lead shot visible? NO NO NO	XRF An Lead Conc. (ppm) 19 15	Sample # AUG 02-15 AUG 02-16 AUG 02-17
0900 0 0.5 1.0 0905 1.5	.5 .0 .0 .5 .5 .0	(SW) Well graded sand with gravel, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, coarse gravel, non-plastic, no odor. End of boring at 2 feet bgs.	visible? NO NO NO	(ppm) 19 15 11	AUG 02-15 AUG 02-16 AUG 02-17
0900 0.5 1.0 0905 1.5 2.0	.5	sand, coarse gravel, non-plastic, no odor. End of boring at 2 feet bgs.	NO NO	15	AUG 02-16 AUG 02-17
1.0 0905 1.5 2.0	.0 .5 .5 .5		NO	11	AUG 02-17
0905 1.5	.5				
2.0	.0		NO	14	AUG 02-18
	.5				
2.5					
!	.0	Backfill boring with soil cuttings.			
3.0					
BORING N	NUMBER:	T-2 GPS COORDINATES: 36°59'31.12"N 122°26'.55"W LOCATION O	N SITE: Trail Area	8/4/21 TIME:	1228
Time Depth	Sample Interval	Sail Description	Lead shot	XRF An	alysis
Tir	Sample Interval	Soil Description	visible?	Lead Conc. (ppm)	Sample #
1240 0		(SW) Well graded sand with gravel, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, cobbles, non-plastic, no odor.	NO	23	AUG 02-97
0.5	.5		NO	9	AUG 02-98
1.0	.0		NO	5	AUG 02-99
1245	.5		NO	6	AUG 02-100
2.0	.0				
2.5	.5	End of boring at 2 feet bgs. Backfill boring with soil cuttings.			
3.0	.0				
BORING N		T-3 GPS COORDINATES: 36°59'31.12"N 122°26'.55"W LOCATION O	N SITE: Trail Area	8/4/21 TIME:	1248
Time Depth	Sample Interval	Soil Description	Lead shot visible?	Lead Conc.	Sample #
1305		(SW) Well graded sand with gravel, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, coarse gravel, non-plastic, no odor.	NO	384	AUG 02-101
0.5	.5	3.2.3, no., p. 2.3.4, no.	NO	329	AUG 02-102
1.0	.0		NO	31	AUG 02-103
1310	.5		NO	8	AUG 02-104
2.0	.0				
2.5	.5	End of boring at 2 feet bgs. Backfill boring with soil cuttings.			
3.0	.0				

Task 1

PROJECT NUMBER AND TASK: 01-POG-002

	S	SOLU	LOGGED & SAMPLED BY: B. Angulo	ı	DATE: 1/11/202	22
BORIN	G NUI	MBER:	T-4 GPS COORDINATES: 36°59.479'N 122°02.118'W LOCATION ON SITE: I	Emma McCrary Trail A	Area TIME:	0825
Φ	£	ole val		Lead shot	XRF An	alysis
Time	Depth	Sample Interval	Soil Description	visible?	Lead Conc. (ppm)	Sample #
0840	0		(SM) Silty sand, dark brown (7.5YR 3/2), loose, fine-grained sand, non-plastic, no odor, roots.	NO	48	JAN 11-5
	0.5			NO	22	JAN 11-6
	1.0		(MH) Sandy silt, dark brown (7.5YR 3/2), soft, fine-grained sand, low plasticty, no odor, roots.	NO	16	JAN 11-7
0845	1.5		Wet.	NO	15	JAN 11-8
	2.0					
	2.5		End of boring at 2 feet bgs.			
	3.0		Backfill boring with soil cuttings.			
ORIN	G NUI	MBER:	T-5 GPS COORDINATES: 36°59'468'N 122°02.136'W LOCATION ON SITE: I	Emma McCrary Trail A	Area TIME:	0855
ē	ŧ	ple val		Lead shot	XRF An	alysis
Time	Depth	Sample Interval	Soil Description	visible?	Lead Conc. (ppm)	Sample #
910	0	X	(SM) Silty sand, very dark gray (7.5YR 3/1), moist, loose, fine-grained sand, non-plastic, no odor, roots.	NO	99	JAN 11-13
	0.5			NO	27	JAN 11-14
	1.0		(MH) Sandy silt, very dark gray (7.5YR 3/1), wet, soft, fine-grained sand, low plasticity, no odor, roots.	NO	25	JAN 11-15
915	1.5	X	345,7,5546.	NO	13	JAN 11-16
	2.0					
	2.5		End of boring at 2 feet bgs.			
	3.0		Backfill boring with soil cuttings.			
ORIN	G NUI	MBER:	T-6 GPS COORDINATES: 36°59.474'N 122°02.161'W LOCATION ON SITE: I	Emma McCrary Trail A	Area TIME:	0918
e l	ţ	ple	A 11 - 1 - 1 - 1	Lead shot	XRF An	alysis
Ξ	Depth	Sample Interval	Soil Description	visible?	Lead Conc. (ppm)	Sample #
940	0	X	(SM) Silty sand, very dark gray (7.5YR 3/1), moist, loose, fine-grained sand, non-plastic, no odor.	NO	152/489/91	JAN 11- 19/20/21
	0.5			NO	22	JAN 11-22
	1.0		(MH) Sandy silt, very dark gray (7.5YR 3/1), wet, soft, fine-grained sand, low plasticity, no odor.	NO	17	JAN 11-23
945	1.5	X		NO	12	JAN 11-24
	2.0					
		1				
	2.5		End of boring at 2 feet bgs. Backfill boring with soil cuttings.			

PROJECT NUMBER AND TASK: 01-POG-002 Task 1

BORIN	IG NU	MBER: 1	Γ-7 GPS COORDINATES: 36°59.453'N 122°02.173'W LC	OCATION ON SITE: E	mma McCrary Trail	Area TIME:	0947
ψ.	£	ole val			Lead shot	XRF	Analysis
Time	Depth	Sample Interval	Soil Description		visible?	Lead Conc. (ppm)	Sample #
0955	0	\times	(ML) Sandy silt, dark brown (7.5YR 3/2), loose, soft, fine-grained sand, non-pla	astic, no odor.	NO	107/82	JAN 11-25/26
	0.5				NO	54	JAN 11-27
	1.0		(MH) Sandy silt, dark brown (7.5YR 3/2), wet, soft, fine-grained sand, low plast	ticty, no odor.	NO	14	JAN 11-28
1000	1.5	X			NO	33	JAN 11-29
	2.0						
	2.5		End of boring at 2 feet bgs. Backfill boring with soil cuttings.				
	3.0						

PROJECT NUMBER AND TASK: 01-POG-001 Task:2.2

	5	SOLU	TIONS		LOGGED & SAMPLED BY:		B. Angulo		DATE: 8/5/21	
BORIN	G NUI	MBER:	NO-13	GPS COORDIN	IATES: 36°59'35.93"N 122°2'18.18"'	N	LOCATION ON SITE: I	North Orchard	TIME:	0828
d)	æ	a e					•	Lead shot	XRF Ar	alysis
Time	Depth	Sample Interval			Soil Description			visible?	Lead Conc. (ppm)	Sample #
0840	0	X	(SM) Silty sand, gra odor.	ayish brown (10YR	5/2), dry, very loose, fine-grain	ed sand	l, non-plastic, no	NO	14	AUG 02-133
	0.5							NO	3	AUG 02-134
	1.0							NO	3	AUG 02-135
0845	1.5	X						NO	3	AUG 02-136
	2.0									
	2.5				of boring at 2 feet bgs. I boring with soil cuttings.					
	3.0									
BORIN	G NUI	MBER:	NO-14	GPS COORDINATES:	36°59'34.93"N 122°2'18.55"W		LOCATION ON SITE: I	North Orchard	TIME:	0848
d)	£	al e					•	Lead shot	XRF Ar	alysis
Time	Depth	Sample Interval			Soil Description			visible?	Lead Conc. (ppm)	Sample #
0855	0	\times	(SW) Well graded : plastic, no odor. (1		n (10YR 5/2), dry, very loose, f	ne-grai	ned sand, non	NO	56	AUG 02-137
	0.5							NO	19	AUG 02-138
	1.0							NO	5	AUG 02-139
0900	1.5	X						NO	4	AUG 02-140
	2.0									
	2.5				of boring at 2 feet bgs. I boring with soil cuttings.					
	3.0									

PROJECT NUMBER AND TASK: 01-POG-001 Task:2.2

ORIN	IG NU	MBER:	WM-16 GPS COORDINATES: 36°59'33.22"N 122°2'19.72"W LOCA	CATION ON SITE: V	Vest Meadow	TIME:	0755
ø	ţ	ole val			Lead shot	XRF An	alysis
Time	Depth	Sample Interval	Soil Description		visible?	Lead Conc. (ppm)	Sample #
0800	0	1 X I	(SM) Silty sand, grayish brown (10YR 5/2), dry, very loose, fine-grained sand, non odor.	on-plastic, no	NO	133	AUG 02-12
	0.5				NO	6	AUG 02-13
	1.0				NO	6	AUG 02-13
0805	1.5	\times			NO	5	AUG 02-13
	2.0						
	2.5		End of boring at 2 feet bgs. Backfill boring with soil cuttings.				
				L			
	3.0			-			
	3.0						
BORIN		MBER:		CATION ON SITE: V	Vest Meadow	TIME:	0738
	IG NU		WM-17 GPS COORDINATES: 36°59'32.64"N 122°2'21.09"W LOCA	CATION ON SITE: V	Vest Meadow Lead shot	XRF An	
ORIN e E II	Depth Depth	Sample gg Interval :3	WM-17 GPS COORDINATES: 36°59'32.64"N 122°2'21.09"W LOCA				
Time	IG NU	Sample Interval	WM-17 GPS COORDINATES: 36°59'32.64"N 122°2'21.09"W LOCA		Lead shot	XRF An	alysis Sample #
Time	IG NU Hada O O.5	Sample Interval	WM-17 GPS COORDINATES: 36°59'32.64"N 122°2'21.09"W LOCA Soil Description (SM) Silty sand, grayish brown (10YR 5/2), moist, loose, fine-grained sand, non-p		Lead shot visible?	XRF An Lead Conc. (ppm)	alysis
Time	O 0.5	Sample Interval	WM-17 GPS COORDINATES: 36°59'32.64"N 122°2'21.09"W LOCA Soil Description (SM) Silty sand, grayish brown (10YR 5/2), moist, loose, fine-grained sand, non-podor.		Lead shot visible?	XRF An Lead Conc. (ppm)	Sample # AUG 02-12
ية 0745	0 0.5 1.0	Sample Interval	WM-17 GPS COORDINATES: 36°59'32.64"N 122°2'21.09"W LOCA Soil Description (SM) Silty sand, grayish brown (10YR 5/2), moist, loose, fine-grained sand, non-p		Lead shot visible? NO NO	XRF An Lead Conc. (ppm) 18	Sample #
ية 0745	O 0.5	Sample Interval	WM-17 GPS COORDINATES: 36°59'32.64"N 122°2'21.09"W LOCA Soil Description (SM) Silty sand, grayish brown (10YR 5/2), moist, loose, fine-grained sand, non-podor.		Lead shot visible? NO NO NO	XRF An Lead Conc. (ppm) 18 7 ND	AUG 02-12 AUG 02-12 AUG 02-12
	0 0.5 1.0	Sample Interval	WM-17 GPS COORDINATES: 36°59'32.64"N 122°2'21.09"W LOCA Soil Description (SM) Silty sand, grayish brown (10YR 5/2), moist, loose, fine-grained sand, non-podor.		Lead shot visible? NO NO NO	XRF An Lead Conc. (ppm) 18 7 ND	AUG 02-12 AUG 02-12 AUG 02-12

APPENDIX D

XRF DATA

Reading #	Boring	Depth	Date	Time	Units	Lead
reading "	Location	(feet bgs)	Dute	Time	Onics	Concentration
15	T-1	0.5	8/2/2021	8:54:07	PPM	19
16		1	8/2/2021	8:57:13	PPM	15
17		1.5	8/2/2021	8:59:15	PPM	11
18		2	8/2/2021	9:00:50	PPM	14
19	EM-40	0.5	8/2/2021	8:54:05	PPM	245
20		1	8/2/2021	8:56:26	PPM	125
21		1.5	8/2/2021	9:04:08	PPM	18
22		2	8/2/2021	9:06:58	PPM	16
23	EM-39	0.5	8/2/2021	8:54:54	PPM	519
24		1	8/2/2021	8:57:14	PPM	214
25		1.5	8/2/2021	8:59:37	PPM	211
27		2	8/2/2021	9:01:55	PPM	285
28	EM-38	0.5	8/2/2021	8:54:32	PPM	499
29		1	8/2/2021	8:57:22	PPM	370
30		1.5	8/2/2021	8:59:42	PPM	137
31		2	8/2/2021	9:02:53	PPM	48
32	EM-37	0.5	8/2/2021	8:54:38	PPM	955
33		0.5	8/2/2021	8:56:37	PPM	725
34		1	8/2/2021	8:58:15	PPM	83
35		1.5	8/2/2021	8:59:57	PPM	39
36		2	8/2/2021	9:01:57	PPM	13
38	EM-36	0.5	8/2/2021	8:54:40	PPM	1572
39		0.5	8/2/2021	8:56:27	PPM	1579
40		1	8/2/2021	8:59:00	PPM	78
41		1.5	8/2/2021	9:00:35	PPM	25
42		2	8/2/2021	9:04:54	PPM	64
44	EM-34	0.5	8/2/2021	8:54:14	PPM	687
45		1	8/2/2021	8:56:22	PPM	784
46		1.5	8/2/2021	8:58:09	PPM	48
47		2	8/2/2021	9:04:01	PPM	56
48	R-3	0.5	8/2/2021	8:55:04	PPM	810
49		1	8/2/2021	8:56:56	PPM	19
50		1.5	8/2/2021	8:58:53	PPM	11
51		2	8/2/2021	9:00:40	PPM	12
52	EM-35	0.5	8/2/2021	8:55:15	PPM	1822
53		0.5	8/2/2021	8:57:17	PPM	1631
54		1	8/2/2021	8:59:12	PPM	485
55		1.5	8/2/2021	9:01:09	PPM	48
56		2	8/2/2021	9:03:27	PPM	147

Reading #	Boring	Depth	Date	Time	Units	Lead
	Location	(feet bgs)	- 1- 1			Concentration
57	R-6	0.5	8/2/2021	8:54:18	PPM	628
58		1	8/2/2021	8:57:32	PPM	540
59		1.5	8/2/2021	9:12:45	PPM	155
60		2	8/2/2021	9:15:07	PPM	290
66	R-1	0.5	8/2/2021	8:55:00	PPM	226
67		1	8/2/2021	8:57:04	PPM	57
68		1.5	8/2/2021	8:58:38	PPM	52
69		2	8/2/2021	9:00:09	PPM	131
71	R-4	0.5	8/2/2021	8:54:44	PPM	1302
72		0.5	8/2/2021	8:56:34	PPM	1027
73		1	8/2/2021	8:58:31	PPM	73
75		1.5	8/2/2021	9:01:32	PPM	16
76		2	8/2/2021	9:03:11	PPM	16
77	R-9	0.5	8/2/2021	8:54:09	PPM	182
78		1	8/2/2021	8:56:07	PPM	31
79		1.5	8/2/2021	8:57:51	PPM	6
80		2	8/2/2021	9:00:58	PPM	11
81	R-10	0.5	8/2/2021	8:55:00	PPM	86
82		1	8/2/2021	8:58:21	PPM	23
83		1.5	8/2/2021	9:00:03	PPM	5
84		2	8/2/2021	9:03:53	PPM	3
85	R-11	0.5	8/2/2021	8:54:04	PPM	93
86		1	8/2/2021	8:55:43	PPM	18
87		1.5	8/2/2021	8:59:13	PPM	6
88		2	8/2/2021	9:13:50	PPM	20
89	R-2	0.5	8/2/2021	8:54:06	PPM	28
90		1	8/2/2021	8:55:48	PPM	21
91		1.5	8/2/2021	8:58:49	PPM	4
92		2	8/2/2021	9:01:29	PPM	4
93	R-5	0.5	8/2/2021	9:27:21	PPM	234
94		1	8/2/2021	9:29:32	PPM	49
95		1.5	8/2/2021	9:31:40	PPM	35
96		2	8/2/2021	9:33:26	PPM	18
97	T-2	0.5	8/2/2021	8:54:43	PPM	23
98	_	1	8/2/2021	8:56:20	PPM	9
99		1.5	8/2/2021	8:57:51	PPM	5
100		2	8/2/2021	8:59:27	PPM	6

Reading #	Boring	Depth	Date	Time	Units	Lead
Reading #	Location	(feet bgs)	Date	Tille	Ullits	Concentration
101	T-3	0.5	8/2/2021	9:08:27	PPM	384
102		1	8/2/2021	9:11:08	PPM	329
103		1.5	8/2/2021	9:13:31	PPM	31
104		2	8/2/2021	9:17:09	PPM	8
105	R-8	0.5	8/2/2021	8:56:16	PPM	67
106		1	8/2/2021	8:58:10	PPM	79
107		1.5	8/2/2021	9:05:33	PPM	98
108		2	8/2/2021	9:07:43	PPM	93
109	R-12	0.5	8/2/2021	8:54:51	PPM	61
110		1	8/2/2021	9:07:26	PPM	19
111		1.5	8/2/2021	9:15:05	PPM	50
112		2	8/2/2021	9:18:11	PPM	28
113	R-7	0.5	8/2/2021	9:39:20	PPM	454
114		1	8/2/2021	9:40:44	PPM	151
115		1.5	8/2/2021	9:45:02	PPM	22
116		2	8/2/2021	9:46:36	PPM	33
125	WM-17	0.5	8/2/2021	9:06:57	PPM	18
126		1	8/2/2021	9:08:54	PPM	7
127		1.5	8/2/2021	9:10:16	PPM	<lod< td=""></lod<>
128		2	8/2/2021	9:12:09	PPM	3
129	WM-16	0.5	8/2/2021	9:21:21	PPM	133
130		1	8/2/2021	9:23:22	PPM	6
131		1.5	8/2/2021	9:25:04	PPM	6
132		2	8/2/2021	9:27:18	PPM	5
133	NO-13	0.5	8/2/2021	8:54:28	PPM	14
134		1	8/2/2021	8:56:10	PPM	3
135		1.5	8/2/2021	8:57:41	PPM	3
136		2	8/2/2021	8:59:18	PPM	3
137	NO-14	0.5	8/2/2021	9:06:15	PPM	56
138		1	8/2/2021	9:08:22	PPM	19
139		1.5	8/2/2021	9:10:06	PPM	5
140		2	8/2/2021	9:11:40	PPM	4
141	R-13	0.5	8/2/2021	8:55:14	PPM	741
142		1	8/2/2021	8:57:51	PPM	69
143		1.5	8/2/2021	8:59:32	PPM	22
144		2	8/2/2021	9:00:46	PPM	17
145	R-14	0.5	8/2/2021	8:54:02	PPM	1075
146		0.5	8/2/2021	8:55:36	PPM	1038
147		1	8/2/2021	8:57:34	PPM	34
148		1.5	8/2/2021	8:59:48	PPM	6
149		2	8/2/2021	9:01:12	PPM	6

Reading #	Boring Location	Depth (feet bgs)	Date	Time	Units	Lead Concentration
5	T-4	0.5	1/11/2022	8:25:03	PPM	48
6	T-4	1	1/11/2022	8:26:56	PPM	22
7	T-4	1.5	1/11/2022	8:29:12	PPM	16
8	T-4	2	1/11/2022	8:30:59	PPM	15
9	T-5	0.5	1/11/2022	8:56:43	PPM	160
10	T-5	0.5	1/11/2022	9:00:15	PPM	236
11	T-5	0.5	1/11/2022	9:02:45	PPM	64
12	T-5	0.5	1/11/2022	9:03:43	PPM	126
13	T-5	0.5	1/11/2022	9:06:10	PPM	99
14	T-5	1	1/11/2022	9:07:44	PPM	27
15	T-5	1.5	1/11/2022	9:09:21	PPM	25
16	T-5	2	1/11/2022	9:11:24	PPM	13
17	T-6	0.5	1/11/2022	9:19:05	PPM	282
18	T-6	0.5	1/11/2022	9:22:24	PPM	153
19	T-6	0.5	1/11/2022	9:26:33	PPM	185
20	T-6	0.5	1/11/2022	9:29:26	PPM	489
21	T-6	0.5	1/11/2022	9:32:27	PPM	91
22	T-6	1	1/11/2022	9:34:21	PPM	22
23	T-6	1.5	1/11/2022	9:35:43	PPM	17
24	T-6	2	1/11/2022	9:38:04	PPM	12
25	T-7	0.5	1/11/2022	9:48:16	PPM	107
26	T-7	0.5	1/11/2022	9:50:06	PPM	82
27	T-7	1	1/11/2022	9:52:29	PPM	54
28	T-7	1.5	1/11/2022	9:53:59	PPM	14
29	T-7	2	1/11/2022	9:56:12	PPM	33

APPENDIX E LABORATORY ANALYTICAL REPORTS

Pace Analytical® ANALYTICAL REPORT

August 13, 2021

RMD Environmental - Walnut Creek, CA

L1387682 Sample Delivery Group:

Samples Received: 08/06/2021

Project Number: 01-POG-001

Description: Pogonip Farm and Garden

Report To: Doug Whichard

1371 Oakland Blvd.

Suite 200

Walnut Creek, CA 94596

Entire Report Reviewed By:

Jordan N Zito

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Ds: Detection Summary	8
Sr: Sample Results	9
EM-40-0.5' L1387682-03	9
EM-40-2' L1387682-04	10
EM-39-0.5' L1387682-05	11
EM-39-2' L1387682-06	12
EM-38-0.5' L1387682-07	13
EM-38-2' L1387682-08	14
EM-37-0.5' L1387682-09	15
EM-37-2' L1387682-10	16
EM-36-0.5' L1387682-11	17
EM-36-2' L1387682-12	18
EM-34-1' L1387682-13	19
EM-34-2' L1387682-14	20
EM-35-0.5' L1387682-15	21
EM-35-2' L1387682-16	22
R-3-0.5' L1387682-17	23
R-6-0.5' L1387682-19	24
R-6-2' L1387682-20	25
R-4-0.5' L1387682-23	26
T-3-0.5' L1387682-37	27
R-7-0.5' L1387682-43	28
R-13-0.5' L1387682-53	29
R-14-0.5' L1387682-55	30
Qc: Quality Control Summary	31
Total Solids by Method 2540 G-2011	31
Metals (ICPMS) by Method 6020	34
GI: Glossary of Terms	36
Al: Accreditations & Locations	37

Sc: Sample Chain of Custody

38

EM-40-0.5' L1387682-03 Solid			Collected by B. Angulo	Collected date/time 08/03/21 09:35	Received da 08/06/21 11:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1721547	1	08/12/21 15:09	08/12/21 15:19	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 18:54	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
EM-40-2' L1387682-04 Solid			B. Angulo	08/03/21 09:40	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1721547	1	08/12/21 15:09	08/12/21 15:19	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 19:12	LD	Mt. Juliet, TN
			Collected by		Received da	te/time
EM-39-0.5' L1387682-05 Solid			B. Angulo	08/03/2110:05	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1721547	1	08/12/21 15:09	08/12/21 15:19	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 19:16	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
EM-39-2' L1387682-06 Solid			B. Angulo	08/03/21 10:10	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1721547	1	08/12/21 15:09	08/12/21 15:19	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 19:19	LD	Mt. Juliet, TN
EM-38-0.5' L1387682-07 Solid			Collected by B. Angulo	Collected date/time 08/03/2110:45	Received da 08/06/21 11:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1721547	1	08/12/21 15:09	08/12/21 15:19	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 19:39	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
EM-38-2' L1387682-08 Solid			B. Angulo	08/03/2110:50	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1721547	1	08/12/21 15:09	08/12/21 15:19	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 19:42	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
EM-37-0.5' L1387682-09 Solid			B. Angulo	08/03/21 11:15	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1721547	1	08/12/21 15:09	08/12/21 15:19	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 19:46	LD	Mt. Juliet, TN

EM-37-2' L1387682-10 Solid			Collected by B. Angulo	Collected date/time 08/03/2111:20	Received da 08/06/21 11:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1721547	1	08/12/21 15:09	08/12/21 15:19	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 19:49	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
EM-36-0.5' L1387682-11 Solid			B. Angulo	08/03/21 12:15	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1721547	1	08/12/21 15:09	08/12/21 15:19	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 19:53	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
EM-36-2' L1387682-12 Solid			B. Angulo	08/03/21 12:20	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1721547	1	08/12/21 15:09	08/12/21 15:19	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 19:57	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
EM-34-1' L1387682-13 Solid			B. Angulo	08/03/2112:45	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1721548	1	08/12/21 14:54	08/12/21 15:04	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 20:00	LD	Mt. Juliet, TN
EM-34-2' L1387682-14 Solid			Collected by B. Angulo	Collected date/time 08/03/2112:50	Received da 08/06/21 11:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1721548	1	08/12/21 14:54	08/12/21 15:04	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 20:04	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
EM-35-0.5' L1387682-15 Solid			B. Angulo	08/03/2113:40	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1721548	1	08/12/21 14:54	08/12/21 15:04	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 20:07	LD	Mt. Juliet, TN
			Collected by	Collected date/time		
EM-35-2' L1387682-16 Solid			B. Angulo	08/03/2113:45	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1721548	1	08/12/21 14:54	08/12/21 15:04	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	10	08/12/21 08:22	08/12/21 20:51	LD	Mt. Juliet, TN

R-3-0.5' L1387682-17 Solid			Collected by B. Angulo	Collected date/time 08/03/2113:15	Received da 08/06/21 11:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1721548	1	08/12/21 14:54	08/12/21 15:04	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 20:22	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
R-6-0.5' L1387682-19 Solid			B. Angulo	08/03/21 14:30	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1721548	1	08/12/21 14:54	08/12/21 15:04	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 20:26	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
R-6-2' L1387682-20 Solid			B. Angulo	08/03/21 14:35	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1721548	1	08/12/21 14:54	08/12/21 15:04	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 20:29	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
R-4-0.5' L1387682-23 Solid			B. Angulo	08/04/21 09:00	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1721548	1	08/12/21 14:54	08/12/21 15:04	KDW	Mt. Juliet, TN
fetals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 20:33	LD	Mt. Juliet, TN
Г-3-0.5' L1387682-37 Solid			Collected by B. Angulo	Collected date/time 08/04/2113:05	Received da 08/06/21 11:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1721548	1	08/12/21 14:54	08/12/21 15:04	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 20:36	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
R-7-0.5' L1387682-43 Solid			B. Angulo	08/04/21 14:40	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1721548	1	08/12/21 14:54	08/12/21 15:04	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721876	5	08/12/21 08:22	08/12/21 20:41	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
R-13-0.5' L1387682-53 Solid			B. Angulo	08/05/21 09:10	08/06/21 11:0	JU
<i>M</i> ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1721549	1	08/12/21 10:34	08/12/21 10:41	CMK	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721883	5	08/12/21 08:23	08/12/21 17:25	JPD	Mt. Juliet, TN

R-14-0.5' L1387682-55 Solid			Collected by B. Angulo	Collected date/time 08/05/2110:20	Received date 08/06/21 11:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1721549	1	08/12/21 10:34	08/12/21 10:41	CMK	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1721883	5	08/12/21 08:23	08/12/21 17:42	JPD	Mt. Juliet, TN

CASE NARRATIVE

Unless qualified or notated within the narrative below, all sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jordan N Zito

Project Manager

Metals (ICPMS) by Method 6020

The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

Batch	Lab Sample ID	Analytes
WG1721876	I 1387682-03	Lead

DETECTION SUMMARY

Metals (ICPMS) by Method 6020

			Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilutio n	Analysis	Batch
Client ID	Lab Sample ID	Analyte	mg/kg		mg/kg	mg/kg		date / time	
EM-40-0.5'	L1387682-03	Lead	323	<u>O1</u>	0.123	2.49	5	08/12/2021 18:54	WG1721876
EM-40-2'	L1387682-04	Lead	18.6		0.105	2.12	5	08/12/2021 19:12	WG1721876
EM-39-0.5'	L1387682-05	Lead	504		0.106	2.14	5	08/12/2021 19:16	WG1721876
EM-39-2'	L1387682-06	Lead	220		0.114	2.31	5	08/12/2021 19:19	WG1721876
EM-38-0.5'	L1387682-07	Lead	490		0.111	2.25	5	08/12/2021 19:39	WG1721876
EM-38-2'	L1387682-08	Lead	41.3		0.117	2.36	5	08/12/2021 19:42	WG1721876
EM-37-0.5'	L1387682-09	Lead	571		0.102	2.07	5	08/12/2021 19:46	WG1721876
EM-37-2'	L1387682-10	Lead	14.7		0.107	2.17	5	08/12/2021 19:49	WG1721876
EM-36-0.5'	L1387682-11	Lead	2090		0.102	2.06	5	08/12/2021 19:53	WG1721876
EM-36-2'	L1387682-12	Lead	28.6		0.106	2.14	5	08/12/2021 19:57	WG1721876
EM-34-1'	L1387682-13	Lead	637		0.125	2.53	5	08/12/2021 20:00	WG1721876
EM-34-2'	L1387682-14	Lead	37.9		0.134	2.70	5	08/12/2021 20:04	WG1721876
EM-35-0.5'	L1387682-15	Lead	1800		0.105	2.12	5	08/12/2021 20:07	WG1721876
EM-35-2'	L1387682-16	Lead	5810		0.210	4.25	10	08/12/2021 20:51	WG1721876
R-3-0.5'	L1387682-17	Lead	1530		0.126	2.54	5	08/12/2021 20:22	WG1721876
R-6-0.5'	L1387682-19	Lead	573		0.108	2.18	5	08/12/2021 20:26	WG1721876
R-6-2'	L1387682-20	Lead	341		0.106	2.13	5	08/12/2021 20:29	WG1721876
R-4-0.5'	L1387682-23	Lead	1600		0.123	2.49	5	08/12/2021 20:33	WG1721876
T-3-0.5'	L1387682-37	Lead	474		0.111	2.24	5	08/12/2021 20:36	WG1721876
R-7-0.5'	L1387682-43	Lead	456		0.127	2.56	5	08/12/2021 20:41	WG1721876
R-13-0.5'	L1387682-53	Lead	686		0.102	2.07	5	08/12/2021 17:25	WG1721883
R-14-0.5'	L1387682-55	Lead	1220		0.102	2.07	5	08/12/2021 17:42	WG1721883

Analyte

Lead

SAMPLE RESULTS - 03

Collected date/time: 08/03/21 09:35

Metals (ICPMS) by Method 6020

Result (dry)

mg/kg

323

Qualifier

01

MDL (dry)

mg/kg

0.123

RDL (dry)

mg/kg

2.49

Dilution

5

Analysis

date / time

08/12/2021 18:54

Batch

WG1721876

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	80.3		1	08/12/2021 15:19	WG1721547	

Тс

Analyte

Lead

SAMPLE RESULTS - 04

Collected date/time: 08/03/21 09:40

Metals (ICPMS) by Method 6020

Result (dry)

mg/kg

18.6

Qualifier

MDL (dry)

mg/kg

0.105

RDL (dry)

mg/kg

2.12

Dilution

5

Analysis

date / time

08/12/2021 19:12

Batch

WG1721876

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.3		1	08/12/2021 15:19	WG1721547

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.3		1	08/12/2021 15:19	WG1721547

Collected date/time: 08/03/21 10:05

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	504		0.106	2.14	5	08/12/2021 19:16	WG1721876

³Ss

L138

Total Solids by Method 2540 G-2011

Collected date/time: 08/03/21 10:10

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	86.6		1	08/12/2021 15:19	WG1721547

²Tc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	220		0.114	2.31	5	08/12/2021 19:19	WG1721876

Analyte

Lead

SAMPLE RESULTS - 07

RDL (dry)

mg/kg

2.25

Dilution

5

Analysis

date / time

08/12/2021 19:39

Batch

WG1721876

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020

Result (dry)

mg/kg

490

Qualifier

MDL (dry)

mg/kg

0.111

Collected date/time: 08/03/21 10:45

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.1		1	08/12/2021 15:19	WG1721547

Total Solids by Method 2540 G-2011

Collected date/time: 08/03/21 10:50

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	84.7		1	08/12/2021 15:19	WG1721547

Ss

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	41.3		0.117	2.36	5	08/12/2021 19:42	WG1721876

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.8		1	08/12/2021 15:19	WG1721547

Collected date/time: 08/03/21 11:15

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	571		0.102	2.07	5	08/12/2021 19:46	WG1721876

³Ss

Ğl

RMD Environmental - Walnut Creek, CA

Analyte

Lead

SAMPLE RESULTS - 10

Collected date/time: 08/03/21 11:20

Qualifier

MDL (dry)

mg/kg

0.107

Result (dry)

mg/kg

14.7

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.3		1	08/12/2021 15:19	WG1721547

RDL (dry)

mg/kg

2.17

Dilution

5

Analysis

date / time

08/12/2021 19:49

Batch

WG1721876

Total Solids by Method 2540 G-2011

Collected date/time: 08/03/21 12:15

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.9		1	08/12/2021 15:19	WG1721547

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Lead	2090		0.102	2.06	5	08/12/2021 19:53	WG1721876	

Collected date/time: 08/03/21 12:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.4		1	08/12/2021 15:19	WG1721547

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	28.6		0.106	2.14	5	08/12/2021 19:57	WG1721876

Ss

Ğl

Collected date/time: 08/03/21 12:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	79.1		1	08/12/2021 15:04	WG1721548

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Lead	637		0.125	2.53	5	08/12/2021 20:00	WG1721876	

Collected date/time: 08/03/21 12:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	73.9		1	08/12/2021 15:04	WG1721548

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	37.9		0.134	2.70	5	08/12/2021 20:04	WG1721876

Ss

Ğl

Total Solids by Method 2540 G-2011

Collected date/time: 08/03/21 13:40

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.4		1	08/12/2021 15:04	WG1721548

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Lead	1800		0.105	2 12	5	08/12/2021 20:07	WG1721876	

Collected date/time: 08/03/21 13:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.1		1	08/12/2021 15:04	WG1721548

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Lead	5810		0.210	4.25	10	08/12/2021 20:51	WG1721876	

Total Solids by Method 2540 G-2011

Collected date/time: 08/03/21 13:15

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	78.8		1	08/12/2021 15:04	WG1721548

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	1530		0.126	2.54	5	08/12/2021 20:22	WG1721876

Ss

Ğl

Collected date/time: 08/03/21 14:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.5		1	08/12/2021 15:04	WG1721548

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	573		0.108	2.18	5	08/12/2021 20:26	WG1721876

Collected date/time: 08/03/21 14:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.8		1	08/12/2021 15:04	WG1721548

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	341		0.106	2.13	5	08/12/2021 20:29	WG1721876

Ss

Collected date/time: 08/04/21 09:00

L1387682

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	80.2		1	08/12/2021 15:04	WG1721548

²Tc

Metals (ICPMS) by Method 6020

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	1600		0.123	2.49	5	08/12/2021 20:33	WG1721876

Total Solids by Method 2540 G-2011

Collected date/time: 08/04/21 13:05

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.1		1	08/12/2021 15:04	WG1721548

Ğl

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.1		1	08/12/2021 15:04	<u>WG1721548</u>

Metals (ICPMS) by Method 6020

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	474		0.111	2.24	5	08/12/2021 20:36	WG1721876

Collected date/time: 08/04/21 14:40

L1387682

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	78.1		1	08/12/2021 15:04	WG1721548

²Tc

Metals (ICPMS) by Method 6020

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	456		0.127	2.56	5	08/12/2021 20:41	WG1721876

Ğl

L138768

Total Solids by Method 2540 G-2011

Collected date/time: 08/05/21 09:10

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.8		1	08/12/2021 10:41	WG1721549

²Tc

Metals (ICPMS) by Method 6020

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	686		0.102	2.07	5	08/12/2021 17:25	WG1721883

Collected date/time: 08/05/21 10:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.8		1	08/12/2021 10:41	WG1721549

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	1220		0.102	2.07	5	08/12/2021 17:42	WG1721883

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1387682-03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3691588-1 08	3/12/21 15:19			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1387682-03 Original Sample (OS) • Duplicate (DUP)

	001	14007000 00	08/12/21 15:19 •		DOCO1500 0	00/40/04 45:40
- 1	() \	11 13×76×7=03	118/11/11/15/19	$H \cap H \cap H$	1 2 3691588=3	118/17/71 15:19
- 1	-	1 1307 002 03	00/12/21 10.10	(00)	11130313003	00/12/21 10.10

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	80.3	79.4	1	1.07		10

[†]Cn

⁶Sr

Laboratory Control Sample (LCS)

(1 (5)	D3601	1588-2	09/12/	21 15.10
(LC2)	R309	1588-2	U8/12/	ZT 15:15

(LCS) 1(3031300-2 00/12/	21 15.15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1387682-13,14,15,16,17,19,20,23,37,43

Method Blank (MB)

(MB) R3691583-1 C	(MB) R3691583-1 08/12/2115:04							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	%		%	%				
Total Solids	0.000							

³Ss

L1387682-17 Original Sample (OS) • Duplicate (DUP)

(OS) L1387682-17 08/12/21 15:04 • (DUP) R3691583-3 08/12/21 15:04

	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	78.8	78.4	1	0.491		10

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3691583-2 08/12/21 15:04

(200) 110001000 2 00/12/	20.0 .				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1387682-53,55

Method Blank (MB)

(MB) R3691553-1 08	(MB) R3691553-1 08/12/21 10:41								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	%		%	%					
Total Solids	0.000								

²Tc

Тс

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3691553-2 08/12/2	21 10:41				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

L1387682-03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,19,20,23,37,43

(MB) R3691487-1 08/12/21 18:47

Metals (ICPMS) by Method 6020

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Lead	U		0.0990	2.00

Laboratory Control Sample (LCS)

(LCS) R3691487-2 08/12/21 18:50

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Lead	100	105	105	80.0-120	

[†]Cn

(OS) L1387682-03 08/12/21 18:54 • (MS) R3691487-4 08/12/21 19:05 • (MSD) R3691487-5 08/12/21 19:08

(00) 2:00/002 00 00/:2/2			MS Result (dry)	·	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Lead	125	323	467	452	116	103	5	75.0-125			3.36	20

QUALITY CONTROL SUMMARY

L1387682-53,55

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3691431-1 08	8/12/21 17:18			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Lead	U		0.0990	2 00

Laboratory Control Sample (LCS)

(LCS) R3691431-2 08/12/21	17:21				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Lead	100	102	102	80.0-120	

[†]Cn

(00) 1.007 002 00 007.1272	, ,		MS Result (dry)	•		MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Lead	103	686	803	786	113	96.3	5	75.0-125			2.19	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

	a Delinitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

01

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:	MD Environmental - Walnut Creek		nformation:					Analysis / C	ontainer / Prese	ervative		Chain of Custody	Page of		
RMD Environmental	- Walnut Creek	Accou	ints Payable Oakland Blvd.		Pres Chk							Pac	e Analytical®		
1371 Oakland Blvd.		Suite	200									1	or mary trour		
Suite 200 Walnut Creek. CA 94596		Walni	ut Creek, CA 945	596	200	100	100			100					
Report to: Doug Whichard		Email T dwhich	o: ard@rmdes.net;ba	ngulo@rmdes.r	et		- 1					12065 Lebanon Rd Mo Submitting a sample via constitutes acknowledg Pace Terms and Conditi	this chain of custody ment and acceptance of the		
Project Description: Pogonip Farm and Garden	City,	State Senta	Cruz, UA	Please Ci									om/hubfs/pas-standard-		
Phone: 925-683-8177	Client Project # 01-Pc	6-001	RMDENVPH	HCA-POGON	IP							SDG# AOS	99		
Collected by (print): B. Angula	Site/Facility ID #		P.O. #			oPres						Acctnum: RM			
Collected by (signature): Immediately Packed on Ice N Y	Same Day	5 Day (Rad Onl 10 Day (Rad On	y) Date Resu	ults Needed	No.	20 4ozCir-NoPres	Hold					PM: 942 - Jord PB:	Prelogin: P854917 PM: 942 - Jordan N Zito PB:		
Sample ID	Comp/Grab M	atrix * Dep		Time	Cntrs	Pb 6020	20					Shipped Via: Fo	Sample # (lab only)		
T-1-0.5		SS	8/3/21	2900	1		X						-07		
+-1-2'		SS		0905	1		X			10	655		-02		
EM-40-0.5		SS		0935	1	X							203		
EM-40-2		SS		0940	1	X							-04		
tw-39-0.5		SS		1005	1	X	- 1						-05		
EM-39-2		SS		1010	1	X				810			-98		
		SS		1045	1	1		100					-07		
EM-38-0.5		SS			1					93			-00		
EM-38-2'		SS		1050	1	X				20	100		-100		
EM-37-05'				1115	1	X							10.		
* Matrix: ss - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks: Metal Priore to me	sourples t	o be sloved	1120 1 with 100	10 5	sieve	at lak	pH _ Flow_	Temp_Other		COC Seal COC Signs Bottles a Correct h	mple Receipt Ch Present/Intact ed/Accurate: arrive intact: bottles used:	necklist NP Y N		
DW - Drinking Water OT - Other	Samples returned via:UPSFedEx	Courier	Trac	cking#	36						VOA Zero	If Applicab Headspace:	YN		
Relinquished by : (Signature)	Date:	5/21	1245 1.		1 PAC		2:45	100,000,000	A TE	CL/MeoH BR	RAD Scree	cion Correct/Chen <0.5 mR/hr:	18/6 N		
Relinquished by : (Signature)	Date:	T		eived by: (Signa				Temp: 3	C-23	s Received:		tion required by Log			
Relinquished by : (Signature)	Date:	1	Time: Reco	eived for lab by:	(Signat	ure)	to	Date: 8/6/	Time:	1,00	Hold:		Condition: NCF / OK		

A ...

1-0

Company Name/Address: RMD Environmental - Walnut Creek			Billing Info	rmation:					Analysis / Co	ontainer / Preserva	tive		Chain of Custody	Page	2 of 6
RMD Environmental -	Walnut Cr	eek, CA		s Payable kland Blvd.		Pres Chk							Par	ο Δηρί	lytical*
1371 Oakland Blvd.			Suite 20										/ ac	6 Allal	yticai
Suite 200			Walnut	Creek, CA 9	4596		13					2005	1		
Walnut Creek. CA 94596 Report to:			Email To:				633					100	12065 Lebanon Rd Mo	unt Juliet, TN	37122
Doug Whichard	To the second	1		d@rmdes.net;	bangulo@rmdes.								Submitting a sample via constitutes acknowleds Pace Terms and Condit https://info.pacelabs.o	gment and accions found at:	ceptance of the
Project Description: Pogonip Farm and Garden		City/State Collected:	Senta	(ruz, 14	Please C		1						terms.pdf	7 Por	- standard
Phone: 925-683-8177	Client Project	POG-0	01	RMDENV	# PHCA-POGON	IIP							SDG # / J	58/	682
Collected by (print): B. Anen lo	Site/Facility I	D#		P.O.#			4ozClr-NoPres						Acctnum: RM		НСА
Collected by (signature):		Lab MUST Be		Quote#			Ir-N			10			Template:T18 Prelogin: P85		
Immediately Packed on Ice N Y	ked on Ice N Y Three Day				esults Needed	No.	20 4ozC	Hord					PM: 942 - Jord PB:	an N Zito	
Sample ID	Comp/Grab		Depth Depth	Date	Time	Cntrs	Pb 6020	20					Shipped Via: F	-	round # (lab only)
EM-36-0.5'		SS	T	8/3/2	21 1215	1	X							-	11
EM-36-2'		SS			1220	1	X							-	12
EM-34-1'		SS			1245	1	X							-	13
EM-34-2'		SS			1250	1	X							-	19
EM-35-6.5'		SS			1340	1	X							-	19
EM-35-2'		SS			1345	1	X			3 - 4				-	6
R-3-0.5		SS			1315	1	X					1988		-1	7
12-3-2'		SS			1320	1		X							8
R-6-0.5'		SS			1430	1	X							-	9
F-6-2		SS		1,1	1435	1	X							-	40
* Matrix: SS - Soil AIR - Air F - Filter CM Groundwater R - Bioassay	Remarks: Su	page 1	for sier	re instruct	tims				рН	Temp	_	COC Seal I	ple Receipt Ch Present/Intact 1/Accurate:		N
ww - WasteWater	N - Groundwater B - Bioassay W - WasteWater				- 1				Flow	Other		Correct bo	rrive intact: ottles used:		Y N
N - Drinking Water - Other				Т	racking #							VOA Zero 1	volume sent: If Applicab Headspace:		v N
Relinquished by : (Signature) Date: 81512			Time	2116	eceived by: (Signal	1		15/21	Trip Blank F	Received: Yes/N			ion Correct/Chen <0.5 mR/hr:	ecked:	Y N
Relinquished by : (Signature) Date:			Time	e: R	eceived by: (Signa	ture)			Temp: 31	Bottles Red	ceived:	If preservati	on required by Log	gin: Date	/Time
Relinquished by : (Signature)	linquished by : (Signature) Date:			e: R	eceived for lab by	-	ture	2	Date: 8/6/2	Time:	00	Hold:	A F		dition:

Company Name/Address:			Billing Infor	rmation:					Analysis / Cor	ntainer / Preservat	tive		Chain of Custody	Page 3 of 6	
RMD Environmental -	MD Environmental - Walnut Creek, C 371 Oakland Blvd. uite 200					Pres Chk							Pace	e Analytical [®]	
Suite 200			Suite 200 Walnut 0	Creek, CA 945	96					S - 100		(A)			
Walnut Creek. CA 94596			Email To:			-							12065 Lebanon Rd Mou	nt Juliet, TN 37122	
Report to: Doug Whichard	#		dwhichard	@rmdes.net;ban									Submitting a sample via constitutes acknowledge Pace Terms and Condition https://info.pacelabs.co	ment and acceptance of the ons found at:	
Project Description: Pogonip Farm and Garden		City/State Collected:	Santa C		Please Ci								terms.pdf	1000	
Phone: 925-683-8177	Client Project	1 + 1 - POG -	001	RMDENVPH	ICA-POGON	IP							SDG # ()	8 /602	
Collected by (print): B. Angulo	Site/Facility I	D#		P.O.#			oPres						Acctnum: RMI		
Collected by (signature):	Same D	Lab MUST Be	Day	Quote#			4ozCir-NoPres	L. D.					Prelogin: P854917 PM: 942 - Jordan N Zito		
Immediately Packed on Ice N Y	ked on Ice N Y Three Day				Its Needed	No. of	6020 40	Ho					PB:	edEX Ground	
Sample ID	Sample ID Comp/Grab Matri			Date	Time	Cntrs	Pb 60	20					Remarks	Sample # (lab only)	
P-1-0.5		SS		8/4/21	0745	1		X						-2	
R-1-2'		SS		(075%	1		X						- 47	
P-4-0.51		SS			0900	1	X							73	
2-4-2'		SS			0905	1		X						70	
R-9-0.5		SS			0920	1	100	X						-77	
2-9-21		SS			0925	1		X		0 - 5		100		- No	
2-10-0-5		SS			5935	1		X						-700	
2-10-2		SS			0940	1	1000	X						- 16	
2-11-0.5		SS			1000	1	100	X						-70	
2-11-2'		SS		1 -	1010	1		X					To Describe the	-50	
* Matrix: SS - Soil AIR - Air F - Filter	Remarks: See	page 1	ler sieve	instruction	5				рН	Temp	_	COC Seal Pr COC Signed/ Bottles arr		_NP N N	
GW - Groundwater B - Bioassay WW - WasteWater									Flow	Other	- BROW	Correct bot		Z N	
W - Drinking Water T - Other				Trac	king#					BE SEE		VOA Zero He	If Applicab	YN	
Relinquished by : (Signature) Date: 815			Time: Received by: (Signature) 8/5/21 Trip					Trip Blank F	Received: Yes/N HCL/I TBR			on Correct/Che <0.5 mR/hr:	ecked:XN		
Relinquished by : (Signature) Date:				Time: Received by: (Signature) Temp: C Bottles Received: If preservation required by Logi							gin: Date/Time				
Relinquished by : (Signature)	Date:	Tim	e: Rece	eived for lab by	1	ture)		Date: 8/6/	Time:	W;	Hold:	Condition: NCF / OK			

Company Name/Address:	110000	Billing Info	rmation:					Analysis /	Container	/ Preservative	1	Chain of Custody	Page 4 of 6	
RMD Environmental -	Walnut Cre	eek, CA	Account	s Payable kland Blvd.		Pres Chk							_ Pac	e Analytical [®]
1371 Oakland Blvd. Suite 200 Walnut Creek. CA 94596			Suite 20 Walnut	0 Creek, CA 9459	96									
Report to: Doug Whichard			Email To: dwhichard	@rmdes.net;ban	gulo@rmdes.r	net							12065 Lebanon Rd Mo Submitting a sample via constitutes acknowleds Pace Terms and Condit	a this chain of custody gment and acceptance of the
Project Description: Pogonip Farm and Garden		City/State Collected:	Senta C	inz, ur	Please Ci							100	https://info.pacelabs.co terms.pdf	om/hubfs/pas-standard-
Phone: 925-683-8177	Client Project	# 1 - POG-	oil	Lab Project # RMDENVPH	CA-POGON	IP							SDG # Table #	1681
Collected by (print): B. Angolo	Site/Facility II)#		P.O. # Quote #			loPres						Acctnum: RM Template:T18	
Collected by (signature): Immediately Packed on Ice N	Same Day				ts Needed	No.	6020 4ozClr-NoPres	4pcp					Prelogin: P85 PM: 942 - Jord PB:	4917 an N Zito
Sample ID	Sample ID Comp/Grab Matrix				Time	Cntrs	Pb 60	20					Shipped Via: F	Sample # (lab only)
2-2-0.5'		SS		8/4/21	1055	1		X						-31
P-2-2'		SS			1100	1		X						-32
		SS			1130	1		X				199		-33
P-5-0.5'		SS			1135	1		X			- 1011			-34
T-2-0.5'		SS			1240	1		X						-35
1-2-2'		SS			1245	1		X			000	193		-36
7-3-0.5		SS			1305	1	X							-57
+-3-2'		SS			1310	1		X						-38
P-8-1.5'		SS			1325	1		X			(日本)			-35
		SS			1330	1	300	X		Alla				-90
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Matrix: S-Soil AIR-Air F-Filter W-Groundwater B-Bioassay		Rev Siev	e instruction	S				pH Flow		Temp	COC Seal COC Sign Bottles Correct	ample Receipt Ch Present/Intact ed/Accurate: arrive intact: bottles used:	necklist : NP Y N Y N Y N
DW - Drinking Water OT - Other	V - Drinking Water Samples returned via:			Track	king#							VOA Zero	If Applicab Headspace: tion Correct/Ch	YN
elinquished by : (Signature) Date: 8 5 7			Tim 1	1245 m	Woody /	Porer		15/21		nk Received	HCL / MeoH TBR	RAD Scre	en <0.5 mR/hr:	∠ _N
Relinquished by : (Signature)	Relinquished by : (Signature) Date:			e: Rece	ived by: (Signa	ature)			Temp: 1	40-9	Bottles Received:	If preserva	ation required by Lo	gin: Date/Time
Relinquished by : (Signature)	linquished by : (Signature) Date:				ived for lab by	: (Signa	ture)	2	Date;	21	Time: 1.00	Hold:		Condition:

Company Name/Address: RMD Environmental - Walnut Creek,			Billing Info	rmation:					Analysis / Cor	ntainer / Pro	eservative			Chain of Custody	Page _5 of _6	
RMD Environmental - \	Walnut Cre	eek, CA		s Payable kland Blvd.		Pres Chk								Pace	Analytical®	
1371 Oakland Blvd. Suite 200 Walnut Creek. CA 94596			Suite 200 Walnut 0		1596											
Report to: Doug Whichard			Email To: dwhichard	@rmdes.net;b	angulo@rmdes.	net								12065 Lebanon Rd Mour Submitting a sample via t constitutes acknowledgm Pace Terms and Condition	this chain of custody nent and acceptance of the	
Project Description: Pogonip Farm and Garden		City/State Collected:	Sonta C	mz, UA	Please C									https://info.pacelabs.com terms.pdf	n/hubfs/pas-standard-	
Phone: 925-683-8177	Client Project	# 0G-00	1	RMDENVE	PHCA-POGON	IP								SDG# S	8 1681	
Collected by (print):	Site/Facility ID)#		P.O. #			oPres							Acctnum: RMD		
Collected by (signature):	Same Day X Next Day Two Day Three Day				sults Needed	No.	6020 4ozCir-NoPres	d lot						Prelogin: P854 PM: 942 - Jorda	1917	
Packed on Ice N Y			(Rad Only) Depth	TAT	Time	of Cntrs		20						PB: Shipped Via: Fe	dEX Ground Sample # (lab only)	
R-12-0-5		SS		8/4/21	1405	Ti	Pb	×							-41	
P-12-2'		SS		1 1	1410	1		X							-42	
R-7-0.5		SS			1440	1	X								-43	
F-7-2'		SS		1	1445	1		X				P. Committee			-44	
WM-17-0.5'		SS		8/5/2	1 0745	1		X				192			-49	
WW-17-2'		SS			0750	1		X				1988			-96	
WM-16-6.5		SS			0800	1		X							-17	
WM-16-2'		SS			0805	1		+				-			- 70	
No-13-0.5		SS			0840	1		X			101				79	
No-13- 2'		SS			0845	11	100	X							750,	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks: Su	e fage	1 Per 4	sieve inst	rudiums				pH Flow	Tem		COC Si Bottle Correct	eal Prigned/ es arr	le Receipt Che esent/Intact: Accurate: ive intact: tles used:	_NP Y _N _N _N _N _N _N _N	
W - Wastewater N - Drinking Water T - Other UPSFedExCouri				Tr	acking#							VOA Ze	ero He	volume sent: If Applicabl adspace: n Correct/Che	YN	
Relinquished by Sgnature)	8/5/2			245 1	eceived by: (Signal)	Price		8/5/2	196		HCL / MeoH TBR	Preservation Correct/Checked:N RAD Screen <0.5 mR/hr:N				
Relinquished by : (Signature) Date:			Time		eceived by: (Signa				De 3+	°C 801	tles Received:		f preservation required by Login: Date/Time			
Relinquished by : (Signature)	elinquished by : (Signature) Date:				eceived for lab by	(Signar	ture)	to	B/6/2-	Tir	me: (100	Hold:			Condition:	

Company Name/Address: RMD Environmental - Walnut Creek,			Billing Info	rmation:	1	No.				Aı	nalvsis / Co	ntainer / Preser	vative		Chain of Custod	y Page 6 of
RMD Environmental - 1371 Oakland Blvd. Suite 200	L Oakland Blvd. e 200 nut Creek. CA 94596 rt to:				e vd. A 9459	6	Pres Chk								Pac	ce Analytical®
Report to: Doug Whichard			Email To:	l@rmdes.n	et;bang	ulo@rmdes.n	et									ount Juliet, TN 37122 via this chain of custody dgment and acceptance of the
Project Description: Pogonip Farm and Garden		ity/State	Sonta (Croz, us	-	Please Cir PT MT C	rcle:								Pace Terms and Cond https://info.pacelabs. terms.pdf	itions found at: com/hubfs/pas-standard-
Phone: 925-683-8177	Client Project #			Lab Proje	ect#	A-POGONI									SDG # \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	87682
Collected by (print):	Site/Facility ID #			P.O.#				oPres							Acctnum: RN	IDENVPHCA
Collected by (signature): Immediately Packed on Ice N Y		Day			Results Needed		6020 4ozClr-NoPres	Horp						Prelogin: P85 PM: 942 - Jorg PB:	54917 dan N Zito	
Sample ID	Comp/Grab	Matrix *	Depth	Da	te	Time	Cntrs	Pb 60	70						Shipped Via: h	Sample # (lab only)
No-14-0.5		SS		81	5/21	0895	1		X							-5
No-14-2'		SS				0900	1		X							-52
P-13-0.5		SS				0110	i	X								-53
R-13-2'		SS				0915	1		X					100		-54
R-14-0.5		SS				1020	1	X								-55
P-14-2'		SS			L	1030	1		×							-56
		SS														
		SS														
		SS												1000		
		SS					1									
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks: See	Page 1	For Siev	ve inst	ruetie	ins.					pH Flow	Temp Other		COC Seal COC Signe Bottles a	mple Receipt C Present/Intacted/Accurate: arrive intact: bottles used:	hecklist NP Y N N N N N N N N N
OW - Drinking Water OT - Other	Samples returned vi				Trackir	ng#								VOA Zero	If Applicate Headspace:	ole Y_N
Relinquished by : (Signature)	Date	8/5/	ZI Time	245	M.L	ed by: (Signat	PACE	5 1	8/5/2	21 7	Trip Blank R	TBR	/ MeoH	RAD Scree	tion Correct/Ch en <0.5 mR/hr:	_ N_
Relinquished by : (Signature) Date:			Time	e:		ed by: (Signat				- 6	2.3	°C Bottles F	Received:	If preservat	tion required by Lo	ogin: Date/Time
Relinquished by : (Signature)	elinquished by : (Signature) Date:				Receiv	red for lab by:	(Signat	ure)			8/6/2	Time:	100	Hold:		NCF / OK

2.5

Pace Analytical® ANALYTICAL REPORT

August 25, 2021

RMD Environmental - Walnut Creek, CA

L1391194 Sample Delivery Group:

Project Number:

Samples Received: 08/06/2021

Description: Pogonip Farm and Garden

Report To:

1371 Oakland Blvd.

Suite 200

01-POG-001

Walnut Creek, CA 94596

Doug Whichard

Sc

Entire Report Reviewed By:

Jordan N Zito

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Ds: Detection Summary	7
Sr: Sample Results	8
EM-35-2' L1391194-01	8
R-3-2' L1391194-02	9
R-1-0.5' L1391194-03	10
R-1-2' L1391194-04	11
R-4-2' L1391194-05	12
R-9-0.5' L1391194-06	13
R-9-2' L1391194-07	14
R-10-0.5' L1391194-08	15
R-10-2' L1391194-09	16
R-11-0.5' L1391194-10	17
R-11-2' L1391194-11	18
R-2-0.5' L1391194-12	19
R-2-2' L1391194-13	20
R-5-0.5' L1391194-14	21
R-5-2' L1391194-15	22
T-3-2' L1391194-16	23
R-7-2' L1391194-17	24
R-13-2' L1391194-18	25
R-14-2' L1391194-19	26
Qc: Quality Control Summary	27
Total Solids by Method 2540 G-2011	27
Metals (ICPMS) by Method 6020	30
GI: Glossary of Terms	31
Al: Accreditations & Locations	32

Sc: Sample Chain of Custody

33

SAMPLE SUMMARY

	_	_				
EM-35-2' L1391194-01 Solid			Collected by B. Angulo	Collected date/time 08/03/2113:45	Received da 08/06/21 11:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1726941	1	08/23/21 11:45	08/23/21 11:50	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/2116:06	LD	Mt. Juliet, TN
R-3-2' L1391194-02 Solid			Collected by B. Angulo	Collected date/time 08/03/2113:20	Received da 08/06/21 11:0	
	Dotah	Dilution	Dranaration	Amahasia	Amaluat	Lagation
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1726941	1	08/23/21 11:45	08/23/21 11:50	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/2116:09	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
R-1-0.5' L1391194-03 Solid			B. Angulo	08/04/21 07:45	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1726941	1	08/23/21 11:45	08/23/21 11:50	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/2116:13	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
R-1-2' L1391194-04 Solid			B. Angulo	08/04/21 07:50	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1726943	1	08/23/21 11:35	08/23/21 11:41	KDW	Mt. Juliet, TN
detals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/21 16:45	LD	Mt. Juliet, TN
R-4-2' L1391194-05 Solid			Collected by B. Angulo	Collected date/time 08/04/21 09:05	Received da 08/06/21 11:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1726943	1	08/23/21 11:35	08/23/21 11:41	KDW	Mt. Juliet, TN
detals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/2116:49	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
R-9-0.5' L1391194-06 Solid			B. Angulo	08/04/21 09:20	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1726943	1	08/23/21 11:35	08/23/21 11:41	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/21 16:52	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
R-9-2' L1391194-07 Solid			B. Angulo	08/04/21 09:25	08/06/21 11:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1726943	1	08/23/21 11:35	08/23/21 11:41	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/2116:56	LD	Mt. Juliet, TN

SAMPLE SUMMARY

D 40 0 EL 140040 4 00 0 " '			Collected by B. Angulo	Collected date/time 08/04/21 09:35	Received date 08/06/21 11:0	
R-10-0.5' L1391194-08 Solid			B. Angulo	08/04/21 09:35	08/06/2111:0)U
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Fatal Calida hu Makhad 2F40 C 2014	WC172C042	1	date/time	date/time	KDW	M4 Juliat TN
otal Solids by Method 2540 G-2011 Netals (ICPMS) by Method 6020	WG1726943	1 5	08/23/21 11:35 08/18/21 08:03	08/23/21 11:41	KDW LD	Mt. Juliet, TN
retals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/21 17:00	LU	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
R-10-2' L1391194-09 Solid			B. Angulo	08/04/21 09:40	08/06/21 11:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1726943	1	08/23/21 11:35	08/23/21 11:41	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/2117:03	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
R-11-0.5' L1391194-10 Solid			B. Angulo	08/04/2110:00	08/06/21 11:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	•	
otal Solids by Method 2540 G-2011	WG1726943	1	08/23/21 11:35	08/23/21 11:41	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/21 17:07	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
R-11-2' L1391194-11 Solid			B. Angulo	08/04/21 10:10	08/06/21 11:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1726943	1	08/23/21 11:35	08/23/21 11:41	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/21 17:11	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
R-2-0.5' L1391194-12 Solid			B. Angulo	08/04/2110:55	08/06/21 11:0	00
<i>M</i> ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1726943	1	08/23/21 11:35	08/23/21 11:41	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/21 17:15	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
R-2-2' L1391194-13 Solid			B. Angulo	08/04/21 11:00	08/06/21 11:0	00
M ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1726943	1	08/23/21 11:35	08/23/21 11:41	KDW	Mt. Juliet, TN
letals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/21 15:47	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
R-5-0.5' L1391194-14 Solid			B. Angulo	08/04/21 11:30	08/06/21 11:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1726944	1	08/23/21 11:28	08/23/21 11:34	KDW	Mt. Juliet, TN
A . I (ICDAC) I AA II ICOOO	WC170 4000	_	00/40/24 00:02	00/22/24 17:40	1.0	NAC LICETA

Metals (ICPMS) by Method 6020

WG1724688

08/18/21 08:03

08/23/21 17:19

LD

Mt. Juliet, TN

SAMPLE SUMMARY

R-5-2' L1391194-15 Solid			Collected by B. Angulo	Collected date/time 08/04/21 11:35	Received da 08/06/21 11:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1726944	1	08/23/21 11:28	08/23/21 11:34	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/21 17:36	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
T-3-2' L1391194-16 Solid			B. Angulo	08/04/21 13:10	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1726944	1	08/23/21 11:28	08/23/21 11:34	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/21 17:40	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
R-7-2' L1391194-17 Solid			B. Angulo	08/04/21 14:45	08/06/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1726944	1	08/23/21 11:28	08/23/21 11:34	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/21 17:43	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
R-13-2' L1391194-18 Solid			B. Angulo	08/05/21 09:15	08/06/21 11:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1726944	1	08/23/21 11:28	08/23/21 11:34	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1724688	5	08/18/21 08:03	08/23/21 17:47	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
R-14-2' L1391194-19 Solid			B. Angulo	08/05/2110:30	08/06/21 11:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		

WG1726944

WG1724688

1

5

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020

08/23/21 11:28

08/18/21 08:03

08/23/21 11:34

08/23/21 17:51

KDW

LD

Mt. Juliet, TN

Mt. Juliet, TN

CASE NARRATIVE

Unless qualified or notated within the narrative below, all sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

2

Project Manager

Metals (ICPMS) by Method 6020

Jordan N Zito

The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

BatchLab Sample IDAnalytesWG1724688L1391194-13Lead

DETECTION SUMMARY

Metals (ICPMS) by Method 6020

			Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilutio n	Analysis	Batch
Client ID	Lab Sample ID	Analyte	mg/kg		mg/kg	mg/kg		date / time	
EM-35-2'	L1391194-01	Lead	198		0.106	2.15	5	08/23/2021 16:06	WG1724688
R-3-2'	L1391194-02	Lead	31.4		0.127	2.57	5	08/23/2021 16:09	WG1724688
R-1-0.5'	L1391194-03	Lead	400		0.132	2.67	5	08/23/2021 16:13	WG1724688
R-1-2'	L1391194-04	Lead	61.5		0.122	2.47	5	08/23/2021 16:45	WG1724688
R-4-2'	L1391194-05	Lead	23.7		0.119	2.40	5	08/23/2021 16:49	WG1724688
R-9-0.5'	L1391194-06	Lead	256		0.126	2.54	5	08/23/2021 16:52	WG1724688
R-9-2'	L1391194-07	Lead	6.59		0.122	2.46	5	08/23/2021 16:56	WG1724688
R-10-0.5'	L1391194-08	Lead	94.0		0.120	2.43	5	08/23/2021 17:00	WG1724688
R-10-2'	L1391194-09	Lead	12.5		0.129	2.60	5	08/23/2021 17:03	WG1724688
R-11-0.5'	L1391194-10	Lead	75.7		0.105	2.12	5	08/23/2021 17:07	WG1724688
R-11-2'	L1391194-11	Lead	23.3		0.106	2.13	5	08/23/2021 17:11	WG1724688
R-2-0.5'	L1391194-12	Lead	215		0.105	2.12	5	08/23/2021 17:15	WG1724688
R-2-2'	L1391194-13	Lead	8.80	<u>O1</u>	0.110	2.23	5	08/23/2021 15:47	WG1724688
R-5-0.5'	L1391194-14	Lead	9.86		0.104	2.10	5	08/23/2021 17:19	WG1724688
R-5-2'	L1391194-15	Lead	17.9		0.107	2.17	5	08/23/2021 17:36	WG1724688
T-3-2'	L1391194-16	Lead	8.15		0.112	2.26	5	08/23/2021 17:40	WG1724688
R-7-2'	L1391194-17	Lead	66.0		0.122	2.46	5	08/23/2021 17:43	WG1724688
R-13-2'	L1391194-18	Lead	31.9		0.104	2.10	5	08/23/2021 17:47	WG1724688
R-14-2'	L1391194-19	Lead	10.9		0.112	2.26	5	08/23/2021 17:51	WG1724688

Total Solids by Method 2540 G-2011

Collected date/time: 08/03/21 13:45

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.2		1	08/23/2021 11:50	WG1726941

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	198		0.106	2.15	5	08/23/2021 16:06	WG1724688

Collected date/time: 08/03/21 13:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	77.9		1	08/23/2021 11:50	WG1726941

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	31.4		0.127	2.57	5	08/23/2021 16:09	WG1724688

Ss

Collected date/time: 08/04/21 07:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	74.9		1	08/23/2021 11:50	WG1726941

Metals (ICPMS) by Method 6020

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	400		0.132	2.67	5	08/23/2021 16:13	WG1724688

Total Solids by Method 2540 G-2011

Collected date/time: 08/04/21 07:50

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	80.8		1	08/23/2021 11:41	WG1726943

Ss

Metals (ICPMS) by Method 6020

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	61.5		0.122	2.47	5	08/23/2021 16:45	WG1724688

Analyte

Lead

SAMPLE RESULTS - 05

Collected date/time: 08/04/21 09:05

Qualifier

MDL (dry)

mg/kg

0.119

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020

Result (dry)

mg/kg

23.7

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	83.3		1	08/23/2021 11:41	WG1726943

RDL (dry)

mg/kg

2.40

Dilution

5

Analysis

date / time

08/23/2021 16:49

Batch

WG1724688

Collected date/time: 08/04/21 09:20

L1391194

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	78.7		1	08/23/2021 11:41	WG1726943

²Tc

Metals (ICPMS) by Method 6020

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	256		0.126	2.54	5	08/23/2021 16:52	WG1724688

Analyte

Lead

SAMPLE RESULTS - 07

RDL (dry)

mg/kg

2.46

Dilution

5

Analysis

date / time

08/23/2021 16:56

Batch

WG1724688

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020

Result (dry)

mg/kg

6.59

Qualifier

MDL (dry)

mg/kg

0.122

Collected date/time: 08/04/21 09:25

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	81.4		1	08/23/2021 11:41	WG1726943

Collected date/time: 08/04/21 09:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	82.2		1	08/23/2021 11:41	WG1726943

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	94.0		0.120	2.43	5	08/23/2021 17:00	WG1724688

Ğl

Analyte

Lead

SAMPLE RESULTS - 09

Qualifier

MDL (dry)

mg/kg

0.129

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020

Result (dry)

mg/kg

12.5

Collected date/time: 08/04/21 09:40

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	76.9		1	08/23/2021 11:41	WG1726943

RDL (dry)

mg/kg

2.60

Dilution

5

Analysis

date / time

08/23/2021 17:03

Batch

WG1724688

Analyte

Lead

SAMPLE RESULTS - 10

Collected date/time: 08/04/21 10:00

Qualifier

MDL (dry)

mg/kg

0.105

Result (dry)

mg/kg

75.7

Metals (ICPMS) by Method 6020

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.3		1	08/23/2021 11:41	WG1726943

RDL (dry)

mg/kg

2.12

Dilution

5

Analysis

date / time

08/23/2021 17:07

Batch

WG1724688

Collected date/time: 08/04/21 10:10

Metals (ICPMS) by Method 6020

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.8		1	08/23/2021 11:41	WG1726943

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	23.3		0.106	2.13	5	08/23/2021 17:11	WG1724688

Collected date/time: 08/04/21 10:55

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.4		1	08/23/2021 11:41	WG1726943

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	215		0.105	2.12	5	08/23/2021 17:15	WG1724688

Ss

Analyte

Lead

SAMPLE RESULTS - 13

Collected date/time: 08/04/21 11:00

RDL (dry)

mg/kg

2.23

Dilution

5

Analysis

date / time

08/23/2021 15:47

Batch

WG1724688

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020

Result (dry)

mg/kg

8.80

Qualifier

01

MDL (dry)

mg/kg

0.110

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.7		1	08/23/2021 11:41	WG1726943

Collected date/time: 08/04/21 11:30

L1391194

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.4		1	08/23/2021 11:34	WG1726944

²Tc

Metals (ICPMS) by Method 6020

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	9.86		0.104	2.10	5	08/23/2021 17:19	WG1724688

Collected date/time: 08/04/21 11:35

Total Solids by Method	d 2540 G-2				
	Result	Qualifier	Dilution	Analysis	<u>Batch</u>

Metals (ICPMS) by Method 6020

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	17.9		0.107	2.17	5	08/23/2021 17:36	WG1724688

Collected date/time: 08/04/21 13:10

Total Solids by Method 2540 G-2011									
	Result	Qualifier	Dilution	Analysis	<u>Batch</u>				
Analyte	%			date / time					
Total Solids	88.5		1	08/23/2021 11:34	WG1726944				

Metals (ICPMS) by Method 6020

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	8.15		0.112	2.26	5	08/23/2021 17:40	WG1724688

Ss

Ğl

Collected date/time: 08/04/21 14:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	81.1		1	08/23/2021 11:34	WG1726944

Ss

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	66.0		0.122	2 46	5	08/23/2021 17:43	WG1724688

Collected date/time: 08/05/21 09:15

L1391194

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.1		1	08/23/2021 11:34	WG1726944

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	31.9		0.104	2.10	5	08/23/2021 17:47	WG1724688

Collected date/time: 08/05/2110:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	88.4		1	08/23/2021 11:34	WG1726944

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	10.9		0.112	2.26	5	08/23/2021 17:51	WG1724688

Ss

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1391194-01,02,03

Method Blank (MB)

(MB) R3695514-1 08	3/23/21 11:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

³Ss

L1391123-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1391123-01 08/23/21 11:50 • (DUP) R3695514-3 08/23/21 11:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.2	94.1	1	0.0551		10

⁶Sr

Laboratory Control Sample (LCS)

(LCS) R3695514-2 08/23/21 11:50

(200) 1.00000112 00/20/	2				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1391194-04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R3695512-1 0	8/23/21 11:41			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

10

L1391194-12 Original Sample (OS) • Duplicate (DUP)

(05)	1 1391194-12	08/23/21 11:41 •	(DLIP	R3695512-3	08/23/21 11:41
 -	/ LIJJ11J + 1Z	00/23/2111.71	(00)	113033312 3	00/23/2111.41

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.4	94.0	1	0.481		10

³Ss

⁶Sr

Laboratory Control Sample (LCS)

(LCS) R3695512-2 08/23/21 11:4

()	-,				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1391194-14,15,16,17,18,19

Method Blank (MB)

(MB) R3695511-1 08	3/23/21 11:34			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

Tc

L1391194-14 Original Sample (OS) • Duplicate (DUP)

	Original Resu	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	95.4	95.4	1	0.0336		10

Sr

Ss

Laboratory Control Sample (LCS)

11 (5)	P3695511_2	08/23/21 11:34	
11 () 1	K3093311-Z	U0/Z3/Z1 II.34	•

203) 100030311-2 00/23/21 11:54										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	%	%	%	%						
Total Solids	50.0	50.0	100	85.0-115						

QUALITY CONTROL SUMMARY

L1391194-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19

Method Blank (MB)

Metals (ICPMS) by Method 6020

(MB) R3695415-1 08/23/21 15:39

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Lead	U		0.0990	2.00

Laboratory Control Sample (LCS)

(LCS) R3695415-2 08/23/2115:43

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Lead	100	96.1	96.1	80.0-120	

(OS) L1391194-13 08/23/21 15:47 • (MS) R3695415-5 08/23/21 15:58 • (MSD) R3695415-6 08/23/21 16:02

(00, 2000)	, ,		MS Result (dry)	MSD Result (dry)	MS Rec.		Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Lead	111	8.80	135	136	113	114	5	75.0-125			1.16	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference. 01

PAGE:

31 of 38

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:	And the last	177	Billing Information: Analysis / Container / P					ntainer / Preservative		Chain of Custody	Page 2 of b		
RMD Environmental - 1	Walnut Cr	eek, CA	CONTRACTOR OF STREET	s Payable kland Blvd.		Pres Chk						Pac	e Analytical*
1371 Oakland Blvd. Suite 200			Suite 20					1000				1/- ac	or mary troat
Walnut Creek. CA 94596			Walnut	Creek, CA 94!	596								
Report to:			Email To:		BET LANS.		100					12065 Lebanon Rd Mo	
Doug Whichard		ole and	dwhichard	@rmdes.net;ba	ngulo@rmdes.	net		1				Submitting a sample via constitutes acknowleds Pace Terms and Conditi	ment and acceptance of the
Project Description: Pogonip Farm and Garden			Senta	Cruz, LA	Please C			PER CO				https://info.pacelabs.co terms.pdf	
Phone: 925-683-8177	Client Project	# POG-01	01	RMDENVPI	HCA-POGON	IIP						SDG#	8 7682
Collected by (print): S. Hren lo	Site/Facility II)#		P.O.#			Pres					Acctnum: RM	39119V DENVPHCA
Collected by (signature):	The state of the s	Lab MUST Be		Quote#			Ir-No					Template:T18	
Immediately Packed on Ice N Y	Same D Next Da Two Da Three D	y 10 Da	Day y (Rad Only) ay (Rad Only) to tw7		ults Needed	No.	6020 4ozClr-NoPres	Herb				Prelogin: P85 PM: 942 - Jord P8:	A TURN THE STREET CONTROL
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Pb 607	30				Shipped Via: Fi	Sample # (lab only)
EM-36-0.5'		SS		8/3/21	1215	11	X	100					-#
EM-36-2"		SS			1270	1	X						1-12
EM-34-1	THE REAL PROPERTY.	SS	品是严厉		1245	1	X				一層層		1-13
EM-34-2		SS			1250	1	X						-14
E14-35-6.5		SS			1340	1	Y	75.5					-19
EU1-35-2'		SS			1345	1	X				705-		-16-
P-3-0.5'		SS	davis		1315	1	X	196					-17
P-3-2'	A SUBSECTION OF THE PARTY OF TH	SS	Section 1		1320	1		X					-t8 -
R-6-0.5'	Marie Sale	SS			1430	1	X			福 - 8 00			1-19
P-6-2'		SS	Carlot Control	The state of	1435	1	X						-20
GW - Groundwater B - Bioassay WW - WasteWater	Remarks: Su	suge 1	for slov	ve instruction	ns				pH	Temp	COC Si Bottle	Sample Receipt Chal Present/Intact gned/Accurate: s arrive intact: t bottles used:	
DW - Drinking Water OT - Other	Samples returnedUPSFedEx			Trac	king#						VOA Ze	ient volume sent: If Applicab ero Headspace:	Y_N
Relinquished by : (Signature)	yb "	8/5/21	Time	245 Reco	elved by: (Signa	ture)		15/21	Trip Blank Re	HCL / Meo	RAD Sc	vation Correct/Chereen <0.5 mR/hr:	ecked: Y N
Relinquished by : (Signature)	Da	ate:	Time: Received I			ture)			Temp: 31	Day S	d: If prese	rvation required by Lo	gin: Date/Time
Relinquished by : (Signature)	Da	ate:	Time	Reco	elved for lab by		ure)	7	Date: 8/6/2	Time: () ()			Condition:

Company Name/Address:	Grand Control	The same of	Billing Info	rmation:			-				- Con 10		Chain of Custody	Dage 2 of La	7
RMD Environmental	- Walnut Cr	eek, CA	Account			Pre: Chk	_		Analysis / (Container / Pr	eservative		Chain of Custody	Page 3 of b	
Suite 200 Walnut Creek. CA 94596			Suite 20 Walnut		A 94596								1	or way doca	7 - 7
Report to:	100		Email To:										12065 Lebanon Rd Mo		
Doug Whichard Project Description:			dwhichard	@rmdes.n	et;bangulo@rmo	des.net								a this chain of custody greent and acceptance of the tions found at:	133
Pogonip Farm and Garden		City/State Collected:	Santa (ruz, cf	PT M	se Circle:							https://info.pacelabs.c	com/hubfk/pas-standard-	
Phone: 925-683-8177	Client Project	# - POG -	001	RMDE!	ect # NVPHCA-POG	ONIP							SDG #	\$768.	7
ollected by (print): B. Angelo	Site/Facility II	D#		P.O.#			Pres						Acctnum: RM	394194 IDENVPHCA	
ollected by (signature):		ab MUST Be		Quote #			4ozCir-NoPres	A					Template:T18 Prelogin: P85		
nmediately acked on Ice N y	Next Da Two Da Three D	10 Da	(Rad Only) by (Rad Only) STD T		e Results Needed	No.	20 40z	Hot					PM: 942 - Jord PB:		
Sample ID	Comp/Grab	Matrix *	Depth	Dat	te Time	Cote	Pb 6020	2 0					Shipped Via: F	Sample # (lab only)	
F-1-0.5		SS		814	21 074	15 1		X						1-21	-03
R-1-2'		SS		1	075	00 1		X						1-7-9	-d
P-4-0-51		SS			090	THE REAL PROPERTY.	X		775					-73	
2-4-2'		SS			040	ACCUSE OF THE PARTY OF		X		78.0		95 0		-29	1-05
R-9-0.5		SS		103	093	20 1		X						1-25	-00
R-9-21		SS			092	575	19 1989	X				96394	Wild Care State	1-75	1-07
2-10-05		SS	Jan Val		093	District Control		X		-				-247	1 -
2-10-2		SS			094	1000 ETS	1	×			500			=28	\$60
2-11-0.5		SS		-	100	The same		X		198				-19	- 10
2-11-2'		SS		I	1010			×		900			HE TO AN ALLES	1-201	-1
- Groundwater B - Bioassay - WasteWater	Remarks: See	page 1 h	v slove	instru	tims				pH _	Ten		COC Sea	Sample Receipt C al Present/Intact gned/Accurate: s arrive intact:	hecklist NP	
	Samples returned v			Tracking #								Suffic	t bottles used: ient volume sent: If Applica	ble	
nquished by : (Signature)	No Date	8/5/21	Time:	1				5×1	Trip Blank	Received:	Yes / No HCL / Meol TBR	Preser RAD Sc	ro Headspace: vation Correct/Cl reen <0.5 mR/hr:	lecked: J N	
equished by : (Signature)	Date	2	Time:					14 (1 2 1) 14 (2 2 1)	Temp:	10 2	ttles Receive	d: If preser	rvation required by Lo	igin: Date/Time	
quished by : (Signature)	Date: Time: Received for lab by, (Signat			ture)	I A	Date:	6. Tir	ne:	() Hold:		Condition NCF / OK/	1			

Company Name/Address:	State of the		Inches (Billing Information:										
RMD Environmental	- Walnut	Creek, C	A Billing In			36.	1		Analysis /	Container	/ Preservative	LESSET	Chain of Custod	y Page 4 of b
1371 Oakland Blvd.			Accour	nts Payable Pakland Blvd.		Pres Chik	100						5)
Suite 200			Suite 2			Cin	10000		- Ballion			C200	- / Pac	ce Analytical
Walnut Creek. CA 94596			Walnut	Creek, CA 945	96								1/-	
Report to: Doug Whichard			Email To:				188						T .	
Project Description:		2.14.79	dwhichar	rd@rmdes.net;ban	gulo@rmdes	net								ria this chain of custody
ogonip Farm and Garden		City/State Collected:	Sonta	cruz, crt	Please (PT) MT	Circle:							Face Terms and Cond	ogment and acceptance of the ltions found at: com/hub/s/pas-standard-
none: 925-683-8177	Client Proje	ct#	DEC TH	Lab Project #	[CT]MI	CIEI						1000	1/	20000
	C	1- 60G.	011	RMDENVPH	CA-POGON	VIP							SDG#	18/40
B. Angulo	Site/Facility	ID#		P.O. #			es						Table # _	139/194
lected by (signature):	Puch 2	0.1.			No. Phys		4ozCir-NoPres	250					Acctnum: RN	IDENVPHCA
B. M.	Same	(Lab MUST Be	Notified)	Quote #			Z-Z						Template:T1	
nediately	Next D	ay 5 Day	(Rad Only)	Date Result	s Needed	1	ZCI	A					Prelogin: P85	
ked on Ice NY_V	Two Da	3V 10 Da	STD TI		3 Needeu	No.	140	#P.LD					PM: 942 - Jord	dan N Zito
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	of Cntrs	6020	20					PB: Shipped Via: F	edEX Ground
2-2-0.5		-				1	Pb						Remarks	Sample # (lab only)
P-2-2'		SS		8/4/21	1055	1		X						1-31
P-5-0.5'		SS			1100	11		X	and a	100 -	- 60			-32
2-5-2		SS			1130	1		X						-33
T-2-0.5		SS	神門。由		1135	1		X						-34
The state of the s		SS			1240	1		X						-30
1-2-2		SS			1245	i		X				- 600	Suite King	-3-
T-3-0.5		SS	100			1	X	^				2000		100
+-3-21		SS	100		1305		^	~			10000			= 300
F-8-1.5'		SS	15 43			3		X	39					= 35
2-8-21	1000	SS	20.00		1325	1		X		-				= 40
AIR - Air F - Filter	emarks: Su p		sieve	makerd	1330	11		X	000			77 1944		= 10
oundwater R Ricarray		0		Shoomas					pH	1	emp	COC Sea	Sample Receipt C	hecklist
asteWater inking Water										Total Control		coc sig	med/Accurate: arrive intact:	
erSa	mples returned via	: 24		THE REAL PROPERTY.		C-865	100000	ESCAPEDIO	Flow_	- (Other	Correct	bottles used	5/2
shed by : (Signature)	UPSFedEx _		7.7	Tracking	#							559996	ent volume sent: If Applical	ele .
95-1	Date:	Islan	Time:	Received	by: (Signatu	re)	8/1	-/21	Trip Blank	Received:	Yes/No	Preserv	o Headspace: ration Correct/Ch	
hed by : (Signature)			124	5 mil	ocoy PA	mer	12	145	no		HCL / MeoH	KAD Scr	een <0.5 mR/hr:	U_1
	Date:		Time:	Received	by: (Signatur	re)	100	/3	Temp: 12	C °C	TBR Bottles Received:	If preserv	vation required by Lo	gin: Date/Time
ned by : (Signature)	Data	111	Market Control						2.31	10-27	3 56	1000		
	Date:		Time:	Received	Received for lab by: (Signature) Date; Time: 1/3						Time: + / 1/	Hold:		Condition:
		20 60 -	1 1 1 1 1	mi	a A	11	1/12	7	18/16/2	1	11.00			NCF / OK)

RMD Environmenta 1371 Oakland Blvd. Suite 200 Walnut Creek. CA 94596 Report to:	r - Wainut Creek,	1371 C Suite 2	nformation: Ints Payable Dakland Blvd. 200 It Creek, CA 9		Pre Chk			Analysis	/ Container /	Preservative		Chain of Cust	ody Page 5 of So 2 ace Analytical	
Doug Whichard	See Line	Email To:	2 9 9 9											
Project Description: Pogonip Farm and Garden	City/St	dwhichai	rd@rmdes.net;b	angulo@rmd	es.net								Mount Juliet, TN 37122 le via this chain of custody	
Phone: 925-683-8177	Collecte	d: Sonta (Cruz, Ut	Prease	Circle:							Pace Terms and Co https://imfo.paceto	eledgment and acceptance of the inditions found at: (Br.com/hubfs/pas-standard-	
323-083-8177			Lab Project #		PROBLEM OF							terms.pdf	2000	
Collected by (print);	01-906-	001	RMDENVP	HCA-POGO	NIP	1						SDG#	38 AS	4
Collected by (print);	Site/Facility ID #		P.O. #			- 5						Table#	139119 V	
collected by (signature):	Puch 3 III					Pres						THE REAL PROPERTY.	MDENVPHCA	
12/	Rush? (Lab MUSTSame Day X FI	Be Notified)	Quote#	TREES.		-No						Template:T		
nmediately ocked on Ice N y	Next Day 5	Davido	Date Resu	Its Needed		4ozCir-NoPr	9					Prelogin: P		
Sample ID	Three Day		THT		No.		He	16.6		188		PM: 942 - Jo	ordan N Zito	
Sample ID	Comp/Grab Matrix	COLUMN TO STATE OF THE PARTY OF	Date	T	Of	6020	20					PB:	Codry Commed	
R-12-0-5				Time	Final	Pb 6	0					Remarks	FedEX Ground Sample # (lab only)	
P-12-2'	SS		8/4/21	1405	11		X						1 111	
R-7-0.5"	SS			1410	1					ALCOHOL:			135	
F-7-2'	SS			1440		~	X			19555			17/4	
WM-17-0.5'	SS		T	1445	1	^	X						77	
WW-17-2'	SS		8/5/21	0745		25 M	Billian Co.						1-44	-/
WM-16-0.5'	SS			0750	1,		X			100 ×			-49	
WM-16-05	SS	Page 3	TO SAS	0800	1	30-8	The second second		100				-96	
No-13-0.5	SS	STOWN STOWN			1		X	900					-17	
No-13- 2'	SS			0805									-40	
V*	SS		18087	0840	1		X		34				1-49	
AIR - Air F - Filter roundwater B - Bioassay	narks: Su page	fer give	einstruct	0845			1						050	100
/asteWater inking Water								рН	Tem		COC Seal	ample Receipt Present/Intac	Checklist NP N	
	ples returned via:			10000				Flow	Othe		COC Sign	ned/Accurate: arrive intact:	AN	
shed by Senature)	P5FedExCourier		Tracking	#			THE REAL PROPERTY.		9 4 4 1	Maria Nation	Correct	bottles used: ent volume sent		
12/1/-	Date:	Time:	Received	by: (Signatur	el el						VOA Zero	If Application Headspace:	YN	
hed by : (Signature)	8/5/21	1245	m. W	1000			15/21	STORESTON STATE	eceived: Yo	HCL/MeaH	RAD Scre	en <0.5 mR/hr:	hecked: Y N	
	Date:	Time:	Received	by: (Signatur	nc 6-	15	:45	Temp.R		TBR			Y	
ned by : (Signature)	Date:	Times	图 图 游差					2. 3+C	1 3	es Received	If preserva	ation required by L	ogin: Date/Time	
		Time:	Received t	or lab by; (Si	gnature)	23,	A 15 30 30 50 50 50 50 50 50 50 50 50 50 50 50 50	Bate:	Time		Hold:	A STATE OF THE STA	Condition: y	4

RMD Environmenta 1371 Oakland Blvd. Suite 200 Walnut Creek. CA 94596 Report to:	l - Walnut C	reek, C	Suite 2	Jakland Blvd.	Blvd.				Analysis	Container /	Preservative		Chain of Custod	Page & of A	
Project Description:			Email To:	: rd@rmdes.net;b	annulo Ser de								12065 Lebanon Rd. Mo	ourd lotter TN 37122	
Pogonip Farm and Garden		City/State		Croz, ca	Please	Circle:							Submitting a sample vi constitutes ecknowled Pace Terms and Condit	a this chain of custody gment and acceptance of the tions found at:	
hone: 925-683-8177	Client Project	#	2011	Lab Project #	(PT) MT	CT ET							https://info.pacelabs.c terms.pdf	om/hubfl/pas-standard	
ollected by (print):	01-4	03-00i		RMDENVP		NIP							SDG# 13	87682	
B. Anzila.	Site/Facility II)#		P.O.#			- 5						Table # /	1391191	
ellected by (signature):	Ruch3 u						Pre			70%			Acctnum: RM	DENVPHCA	1
9	Same Da	ab MUST Be)av	Quote #			L'N						Template:T18	9615	
mediately ked on Ice N y	Two Day	5 Day	(Rad Only) y (Rad Only)	Date Resu	ilts Needed	T	4ozCir-NoPres	9					Prelogin: P85		
Sample ID	Three Da	311	THE			No. of	20 4	Hord		0.5			PM: 942 - Jordi PB:	an N Zito	
	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	6020	70					Shipped Via: Fo	edEX Ground	
No-14-0.5		SS		8/5/21	0865	1	PB			10 m			Remarks	Sample # (lab only)	
NO-14-2'		SS		1	0900	1		X						-S	
P-13-0.5		SS			0110	1	X	X						-52	
R-14-0.5		SS			0915	1	^	1						-53	
P-14-2		SS			1020	1	X	X						-54	-1
F-14-2		SS			1030	1		×			200	1000		-55	
		SS			1030			^						-56	-1
		SS	W.		ALC:							- SING /			45
		SS				100					1000	2000	- 10 Karana (* 11)		16
X: Re	marke: 5 0	SS	38			1									1000
VasteWater Inking Water	marks: Set P	age to	Sieve	Instruction	ns.				pH _ Flow_	Tem		COC Seal COC Sign Bottles	ample Receipt Ch Present/Intact: ed/Accurate; arrive Intact:	ecklist N N N	
	UPS FedEx	Courier		Tracking	H					100		Correct	bottles used:	J_N N	
hed by : (Signature)	Date:	Islzi	Time:	15 M. ()	by: (Signatur	ME		15/21	Trip Blank		HCL / MeoH TBR	Preserva PAD Scre	If Applicabl Headspace; tion Correct/Che en <0.5 mg/hr:	cked: Y N	
hed by : (Signature)			1313		/- Summal	18 55			Temp:	°C Bott	es Received:	If preserva	tion required by Logi	in: Date/Time	193

R5

RMDENVPHCA Pb HOLD Samples L1387682

Please log these HOLD samples for PBG, SIEVE, TS. Note to sieve before analysis.

-21 and -22 (R-1 @ 0.5' and 2')

-24 (R-4 @ 2')

-25 and -26 (R-9 @ 0.5' and 2')

-27 and -28 (R-10 @ 0.5' and 2') -29 and -30 (R-11 @ 0.5' and 2')

-31 and -32 (R-2 @ 0.5' and 2') -33 and -34 (R-5 @ 0.5' and 2')

-38 (T-3 @ 2')

-44 (R-7 @ 2')

-54 (R-13 @ 2")

-56 (R-14 @ 2')

Please also RELOG the below sample for PBG, SIEVE, TS. Let me know if there are any volume issues

-16 (EM-35 @ 2')

Time estimate: oh

Time spent: oh

Members

JZ Jordan Zito

Pace Analytical® ANALYTICAL REPORT

January 24, 2022

RMD Environmental - Walnut Creek, CA

L1451658 Sample Delivery Group: Samples Received: 01/14/2022

Project Number: 01-POG-001

Description: Pogonip Farm and Garden

Report To: Doug Whichard

1371 Oakland Blvd.

Suite 200

Walnut Creek, CA 94596

Entire Report Reviewed By:

Jordan N Zito

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be

reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Ds: Detection Summary	5
Sr: Sample Results	6
T-5-0.5' L1451658-03	6
T-5-2' L1451658-04	7
T-6-0.5' L1451658-05	8
T-6-2' L1451658-06	9
T-7-0.5' L1451658-07	10
T-7-2' L1451658-08	11
Qc: Quality Control Summary	12
Total Solids by Method 2540 G-2011	12
Metals (ICPMS) by Method 6020	13
GI: Glossary of Terms	14
Al: Accreditations & Locations	15
Sc: Sample Chain of Custody	16

SAMPLE SUMMARY

	SAMITLE		VI AIX I			
			Collected by	Collected date/time	Received da	te/time
T-5-0.5' L1451658-03 Solid			B. Angulo	01/11/22 09:10	01/14/22 08:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1803687	1	01/18/22 17:03	01/18/22 17:23	CMK	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1803304	5	01/17/22 15:03	01/21/22 17:11	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
T-5-2' L1451658-04 Solid			B. Angulo	01/11/22 09:15	01/14/22 08:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1803687	1	01/18/22 17:03	01/18/22 17:23	CMK	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1803304	5	01/17/22 15:03	01/21/22 17:28	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
T-6-0.5' L1451658-05 Solid			B. Angulo	01/11/22 09:40	01/14/22 08:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1803687	1	01/18/22 17:03	01/18/22 17:23	CMK	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1803304	5	01/17/22 15:03	01/21/22 17:32	JDG	Mt. Juliet, TN
			Collected by	Collected date/time		
T-6-2' L1451658-06 Solid			B. Angulo	01/11/22 09:45	01/14/22 08:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1803687	1	01/18/22 17:03	01/18/22 17:23	CMK	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1803304	5	01/17/22 15:03	01/21/22 17:36	JDG	Mt. Juliet, TN
T 7 0 FL 144F40F0 07 Calid			Collected by B. Angulo	Collected date/time 01/11/22 09:55	Received da 01/14/22 08:0	
T-7-0.5' L1451658-07 Solid		B				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1803687	1	01/18/22 17:03	01/18/22 17:23	CMK	Mt. Juliet, TN
Metals (ICPMS) by Method 6020	WG1803304	5	01/17/22 15:03	01/21/22 17:46	JDG	Mt. Juliet, TN
			Collected by	Collected date/time		
T-7-2' L1451658-08 Solid			B. Angulo	01/11/22 10:00	01/14/22 08:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1803687	1	01/18/22 17:03	01/18/22 17:23	CMK	Mt. Juliet, TN
M . I (ICPMC) M .II ICCCC	11101000001	-	04/47/00 45 00	04/04/00 47 50	IDC	A4: 1 1: 1 TS:

WG1803304

Metals (ICPMS) by Method 6020

01/17/22 15:03

01/21/22 17:50

JDG

Mt. Juliet, TN

CASE NARRATIVE

Unless qualified or notated within the narrative below, all sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

¹Cp

Jordan N Zito Project Manager

DETECTION SUMMARY

Metals (ICPMS) by Method 6020

			Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilutio n	Analysis	Batch
Client ID	Lab Sample ID	Analyte	mg/kg		mg/kg	mg/kg		date / time	
T-5-0.5'	L1451658-03	Lead	159		0.113	2.29	5	01/21/2022 17:11	WG1803304
T-5-2'	L1451658-04	Lead	7.07		0.118	2.38	5	01/21/2022 17:28	WG1803304
T-6-0.5'	L1451658-05	Lead	187		0.120	2.42	5	01/21/2022 17:32	WG1803304
T-6-2'	L1451658-06	Lead	9.42		0.120	2.42	5	01/21/2022 17:36	WG1803304
T-7-0.5'	L1451658-07	Lead	153		0.120	2.43	5	01/21/2022 17:46	WG1803304
T-7-2'	L1451658-08	Lead	8.92		0.109	2.20	5	01/21/2022 17:50	WG1803304

Collected date/time: 01/11/22 09:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	87.4		1	01/18/2022 17:23	WG1803687

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	159		0.113	2.29	5	01/21/2022 17:11	WG1803304

Ss

Collected date/time: 01/11/22 09:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	84.0		1	01/18/2022 17:23	WG1803687

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	7.07		0.118	2.38	5	01/21/2022 17:28	WG1803304

Ss

Collected date/time: 01/11/22 09:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	82.7		1	01/18/2022 17:23	WG1803687

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	187		0.120	2.42	5	01/21/2022 17:32	WG1803304

Ss

Collected date/time: 01/11/22 09:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	82.8		1	01/18/2022 17:23	WG1803687

Metals (ICPMS) by Method 6020

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	9.42		0.120	2.42	5	01/21/2022 17:36	WG1803304

Ss

Collected date/time: 01/11/22 09:55

1451658

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	82.4		1	01/18/2022 17:23	WG1803687

²Tc

Metals (ICPMS) by Method 6020

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	153		0.120	2.43	5	01/21/2022 17:46	WG1803304

Collected date/time: 01/11/22 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.8		1	01/18/2022 17:23	WG1803687

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	8.92		0.109	2.20	5	01/21/2022 17:50	WG1803304

Ss

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1451658-03,04,05,06,07,08

Method Blank (MB)

(MB) R3751369-1	01/18/22 17:23			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

3 Ss

L1451658-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1451658-04 01/18/22 17:23 • (DUP) R3751369-3 01/18/22 17:23

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	84.0	81.8	1	2.69		10

Laboratory Control Sample (LCS)

(LCS) R3751369-2 01/18/22 17:23

(===)	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
	Spike Amount	LC3 Result	LC3 Rec.	Rec. Lillins
Analyte	%	%	%	%
Total Solids	50.0	49.0	98.0	85.0-115

Sr

QUALITY CONTROL SUMMARY

L1451658-03,04,05,06,07,08

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3752474-1 01	1/21/22 17:03			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Lead	U		0.0990	2.00

Laboratory Control Sample (LCS)

(LCS) R3752474-2 01/21/22 17:07

(200)					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Lead	100	103	103	80.0-120	

(OS) L1451658-03 01/21/22 17:11 • (MS) R3752474-5 01/21/22 17:21 • (MSD) R3752474-6 01/21/22 17:25

(,			MS Result (dry)	•		MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Lead	114	159	269	263	95.9	91.3	5	75.0-125			1.99	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

PAGE:

14 of 16

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40000	Mahasalia	NE OC 1E OE
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 14	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:		ALAN AND AND AND AND AND AND AND AND AND A	Billing Info	rmation:					Analysis / Co	ntainer / Preserva	tive		Chain of Custody	Page of 1	
1371 Oakland Blvd. Suite 200 Walnut Creek. CA 94596 Report to:		1371 Oa Suite 20	Accounts Payable 1371 Oakland Blvd. Suite 200 Walnut Creek, CA 94596					PARE D				- Pace	e Analytica		
		Email To: dwhichard@rmdes.net;bangulo@rmdes.net										12065 Lebanon Rd Moui Submitting a sample via I constitutes acknowledge	this chain of custody nent and acceptance of t		
Project Description: Pogonip Farm and Garden	as T	City/State Collected:			Please Ci								Pace Terms and Conditionhttps://info.pacelabs.com terms.pdf	m/hubfs/pas-standard-	
Phone: 925-683-8177	Client Project	# POG-001		RMDENVPH	HCA-POGON	IP								1191	
Collected by (print): Site/Facility ID #		0#	P.O.#				Pres						Acctnum: RMD	Acctnum: RMDENVPHCA	
Collected by (signature):		Lab MUST Be					6020 4ozClr-NoPres	Horp					Prelogin: P897	Template:T189615 Prelogin: P897732 PM: 942 - Jordan N Zito PB: Shipped Via: FedEX Ground	
Immediately Packed on Ice N Y	Two Da	Next Day 5 Day (Rail Two Day 10 Day (R		(Rad Only) Date Resul y (Rad Only)		No. of							PB:		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	P 60	50					Remarks	Sample # (lab or	
T-4-0.5		SS	0.5	1/1/21	0840	1		X					- Minneson	-01	
T-4-2		SS	2'		0845	1		X					A Comment	-12	
t-5-0.5'		SS	6.5		0910	1	X							-13	
T-5-2'		SS	2		0915	1	X		1-12 Mg					-44	
T-6-0.5	D. Carlon and P. Carlon	SS	05		0940	1	X							-25	
T-6-21		SS	2'		0945	1	×		23.57				11/2/2	46	
T-7-0.5		SS	0.5		0955	1	×							27	
T-7-2'		SS	2'		1000	1	人							-68	
	W	SS	4.15		1.2%										
		SS												12	
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:SIEVE	samples w/	no. 10 SIE	VE PRIOR TO A	INALYSIS				pH Flow	Temp Other		COC Seal COC Sign Bottles Correct	ample Receipt Che Present/Intact: led/Accurate: arrive intact: bottles used:		
OT - Other Samples returned via: UPSFedExCourier		Tracking #								Sufficient volume sent: If Applicable VOA Zero Headspace:		_Y_			
Relinquished by : (Signature)	J. 6-10	ate: 12 2	Time	e: Reco	eived by: (Signa	ture)		- PR	Trip Blank R	eceived: Yes N HCL TBR	МеоН	RAD Scre	etion Correct/Che en <0.5 mR/hr:		
Relinquished by : (\$ignature)	PN 1	ate: /13/2	1 Time	e: Reco	eived by: (Signa	ture)	50		Temp: 3, 34 2	°C Bottles Re	ceived:		ation required by Log		
Relinquished by : (Signature)		ate:	Tim	e: Reco	eived for lab by	(Signat			Date:	Time: U	ev	Hold:		NCF / OK	

APPENDIX F LEAD MODEL SPREADSHEETS

Sum	nary of P	roUCL Output	
	-	Soil (0 to 1.5 feet bgs)	
Last Meadow	/ Sur lace	Soli (U to 1.5 leet bgs)	
	General :	Statistics	
Total Number of Observations	42	Number of Distinct Observations	42
		Number of Missing Observations	0
Minimum	6.12	Mean	353.1
Maximum	2090	Median	105.1
SD	518.6	Std. Error of Mean	80.03
Coefficient of Variation	1.469	Skewness	1.958
		1	
	Normal (GOF Test	
Shapiro Wilk Test Statistic	0.677	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.942	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.257	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.135	Data Not Normal at 5% Significance Level	
Data Not N	ormal at	5% Significance Level	
Assum	ning Norm	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	487.8	95% Adjusted-CLT UCL (Chen-1995)	510.6
		95% Modified-t UCL (Johnson-1978)	491.8
	Gamma (
A-D Test Statistic	1.416	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.815	Data Not Gamma Distributed at 5% Significance	Level
K-S Test Statistic	0.171	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.144	Data Not Gamma Distributed at 5% Significance	Level
Data Not Gamma	Distribut	ed at 5% Significance Level	
	Gamma		0.450
k hat (MLE)	0.492	k star (bias corrected MLE)	0.473
Theta hat (MLE)	717.9	Theta star (bias corrected MLE)	747.2
nu hat (MLE)	41.32	nu star (bias corrected)	39.7
MLE Mean (bias corrected)	353.1	MLE Sd (bias corrected)	513.6
		Approximate Chi Square Value (0.05)	26.26
Adjusted Level of Significance	0.0443	Adjusted Chi Square Value	25.87
		ma Distribution	F 4 4 . O
% Approximate Gamma UCL (use when n>=50))	533.7	95% Adjusted Gamma UCL (use when n<50)	541.8
	ognorma	GOF Test	
Shapiro Wilk Test Statistic	0.853	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.833	Data Not Lognormal at 5% Significance Lev	ام
Lilliefors Test Statistic		Lilliefors Lognormal GOF Test	eı
5% Lilliefors Critical Value	0.133	-	
		Data appear Lognormal at 5% Significance Le normal at 5% Significance Level	evei
Data appear Approxi	nate Log	normal at 3% significance Level	

L	.ognorma	l Statistics	
Minimum of Logged Data	1.812	Mean of logged Data	4.572
Maximum of Logged Data	7.645	SD of logged Data	1.811
		mal Distribution	
95% H-UCL	1299	90% Chebyshev (MVUE) UCL	980.5
95% Chebyshev (MVUE) UCL	1219	97.5% Chebyshev (MVUE) UCL	1550
99% Chebyshev (MVUE) UCL	2200		
		tion Free UCL Statistics	
Data appear to follow a Di	scernible	Distribution at 5% Significance Level	
Nonparam	netric Dist	ribution Free UCLs	
95% CLT UCL	484.7	95% Jackknife UCL	487.8
95% Standard Bootstrap UCL	479.4	95% Bootstrap-t UCL	531.9
95% Hall's Bootstrap UCL	511	95% Percentile Bootstrap UCL	485.9
95% BCA Bootstrap UCL	509.6		
90% Chebyshev(Mean, Sd) UCL	593.2	95% Chebyshev(Mean, Sd) UCL	701.9
97.5% Chebyshev(Mean, Sd) UCL	852.9	99% Chebyshev(Mean, Sd) UCL	1149
		IIII . II	
		UCL to Use	
95% Chebyshev (Mean, Sd) UCL	701.9		
Note: Suggestions regarding the selection of a 95% L	JCL are pro	vided to help the user to select the most appropriate 95%	UCL.
Recommendations are base	ed upon dat	a size, data distribution, and skewness.	
These recommendations are based upon the resul-	ts of the sim	nulation studies summarized in Singh, Maichle, and Lee (200	06).
However, simulations results will not cover all Real Wo	rld data set	s; for additional insight the user may want to consult a stat	istician.

Sum	nary of P	roUCL Output	
	-	•	
East Meadow	Snallow S	ioil (>1.5 to 2 feet bgs)	
	Canaval	Statistics	
Total Number of Observations	General 22	Number of Distinct Observations	21
Total Number of Observations	22		21
No.	0.04	Number of Missing Observations	62.49
Minimum	9.26	Mean	
Maximum	220	Median	38.15
SD SD	61.55	Std. Error of Mean	13.12
Coefficient of Variation	0.985	Skewness	1.478
		GOF Test	
Shapiro Wilk Test Statistic	0.79	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.911	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.239	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.184	Data Not Normal at 5% Significance Level	
Data Not N	ormal at	5% Significance Level	
	ning Norn	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	85.07	95% Adjusted-CLT UCL (Chen-1995)	88.49
		95% Modified-t UCL (Johnson-1978)	85.76
		GOF Test	
A-D Test Statistic	0.586	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value		ected data appear Gamma Distributed at 5% Signit	ficance L
K-S Test Statistic	0.147	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value		ected data appear Gamma Distributed at 5% Signif	ficance L
Detected data appear G	iamma Di	stributed at 5% Significance Level	
		Statistics	
k hat (MLE)	1.312	k star (bias corrected MLE)	1.164
Theta hat (MLE)	47.62	Theta star (bias corrected MLE)	53.7
nu hat (MLE)	57.75	nu star (bias corrected)	51.2
MLE Mean (bias corrected)	62.49	MLE Sd (bias corrected)	57.93
		Approximate Chi Square Value (0.05)	35.77
Adjusted Level of Significance	0.0386	Adjusted Chi Square Value	34.81
Assum	ing Gami	ma Distribution	
% Approximate Gamma UCL (use when n>=50)	89.45	95% Adjusted Gamma UCL (use when n<50)	91.93
L	ognorma	GOF Test	
Shapiro Wilk Test Statistic	0.962	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.911	Data appear Lognormal at 5% Significance Le	evel
Lilliefors Test Statistic	0.094	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.184	Data appear Lognormal at 5% Significance Le	evel
Data appear Lo	ognormal	at 5% Significance Level	

L	.ognorma	Statistics	
Minimum of Logged Data	2.226	Mean of logged Data	3.708
Maximum of Logged Data	5.394	SD of logged Data	0.949
Assumi	a Lagnar	mal Distribution	
95% H-UCL	107.6	90% Chebyshev (MVUE) UCL	104.3
		•	
95% Chebyshev (MVUE) UCL	123.4	97.5% Chebyshev (MVUE) UCL	149.9
99% Chebyshev (MVUE) UCL	202		
Nonparametri	c Distribu	tion Free UCL Statistics	
		Distribution at 5% Significance Level	
· ·		<u> </u>	
Nonparam	netric Dist	ribution Free UCLs	
95% CLT UCL	84.07	95% Jackknife UCL	85.07
95% Standard Bootstrap UCL	83.69	95% Bootstrap-t UCL	90.7
95% Hall's Bootstrap UCL	88.78	95% Percentile Bootstrap UCL	83.94
95% BCA Bootstrap UCL	86.14		
90% Chebyshev(Mean, Sd) UCL	101.9	95% Chebyshev(Mean, Sd) UCL	119.7
97.5% Chebyshev(Mean, Sd) UCL	144.4	99% Chebyshev(Mean, Sd) UCL	193.1
		UCL . II	
		UCL to Use	
95% Adjusted Gamma UCL	91.93		
Note: Suggestions regarding the selection of a 95% L	JCL are pro	vided to help the user to select the most appropriate 95%	UCL.
Recommendations are base	ed upon dat	a size, data distribution, and skewness.	
These recommendations are based upon the resul	ts of the sin	nulation studies summarized in Singh, Maichle, and Lee (200	06).
However, simulations results will not cover all Real Wo	rld data set	s; for additional insight the user may want to consult a stat	istician.

Summary of ProUCL Output Ravine Surface Soil (0 to 1.5 feet bgs) **General Statistics** Total Number of Observations Number of Distinct Observations 12 Number of Missing Observations Minimum 9.86 Mear 593 428 Maximum 1600 Median SD 561.1 Std. Error of Mear 162 Coefficient of Variation 0.946 Skewnes 0.944 Normal GOF Test 0.858 Shapiro Wilk Test Statistic Shapiro Wilk GOF Test 0.859 5% Shapiro Wilk Critical Value Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.184 Lilliefors GOF Test 5% Lilliefors Critical Value 0.243 Data appear Normal at 5% Significance Level Data appear Approximate Normal at 5% Significance Level **Assuming Normal Distribution** 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 883.9 95% Adjusted-CLT UCL (Chen-1995) 906.6 891.2 95% Modified-t UCL (Johnson-1978) Gamma GOF Test A-D Test Statistic 0.191 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.76 Detected data appear Gamma Distributed at 5% Significance Level 0.117 K-S Test Statistic Kolmogorov-Smirnov Gamma GOF Test 5% K-S Critical Value 0.253 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 0.906 0.735 k star (bias corrected MLE) Theta hat (MLE) 654.3 806.5 Theta star (bias corrected MLE) nu hat (MLE) 21.75 17.65 nu star (bias corrected) MLE Mean (bias corrected) 593 MLE Sd (bias corrected) 691.5 Approximate Chi Square Value (0.05) 9.136 Adjusted Chi Square Value 8.217 Adjusted Level of Significance 0.029 **Assuming Gamma Distribution** 95% Approximate Gamma UCL (use when n>=50)) 1145 95% Adjusted Gamma UCL (use when n<50) 1273 Lognormal GOF Test Shapiro Wilk Test Statistic Shapiro Wilk Lognormal GOF Test 0.908 5% Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.151 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.243 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level

	Lognormal Statistics	:	
Minimum of Logged Data	2.288	Mean of logged Data	5.74
Maximum of Logged Data	7.378	SD of logged Data	1.47
Assum	ing Lognormal Distr	ibution	
95% H-UCL	5038	90% Chebyshev (MVUE) UCL	188
95% Chebyshev (MVUE) UCL	2382	97.5% Chebyshev (MVUE) UCL	307
99% Chebyshev (MVUE) UCL	4427	77.376 GHEBYSHEV (WVOE) COE	
Nonparametr	ic Distribution Free	UCL Statistics	
Data appear to follow a Dis	scernible Distributio	n at 5% Significance Level	
Nonpara	netric Distribution F	ree UCLs	
95% CLT UCL	859.4	95% Jackknife UCL	883
95% Standard Bootstrap UCL	852	95% Bootstrap-t UCL	100
95% Hall's Bootstrap UCL	898.4	95% Percentile Bootstrap UCL	859
95% BCA Bootstrap UCL	929.2		
90% Chebyshev(Mean, Sd) UCL	1079	95% Chebyshev(Mean, Sd) UCL	129
97.5% Chebyshev(Mean, Sd) UCL	1605	99% Chebyshev(Mean, Sd) UCL	220
	uggested UCL to U	se	
95% Student's-t UCL	883.9		
When a data set follows an approxim	nate (e.g., normal) dis	tribution passing one of the GOF test	
When applicable, it is suggested to use a UCL bas		, ,	L
Note: Suggestions regarding the selection of a 95% U	•		JCL.
		a distribution, and skewness.	
These recommendations are based upon the result	s of the simulation st	udies summarized in Singh, Maichle, and Lee (2006	o).

Summary of ProUCL Output Ravine Shallow Soil (>1.5 to 2 feet bgs) **General Statistics** Total Number of Observations Number of Distinct Observations 12 Number of Missing Observations Minimum 6.59 Mear 52.96 Maximum 341 Median 23.5 SD Std. Error of Mear 26.77 92.73 Coefficient of Variation 1.751 Skewnes 3.21 Normal GOF Test 0.504 Shapiro Wilk Test Statistic Shapiro Wilk GOF Test 0.859 5% Shapiro Wilk Critical Value Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.361 Lilliefors GOF Test 5% Lilliefors Critical Value 0.243 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level **Assuming Normal Distribution** 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCI 101 95% Adjusted-CLT UCL (Chen-1995) 123.5 105.2 95% Modified-t UCL (Johnson-1978) Gamma GOF Test A-D Test Statistic 0.995 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.762 Data Not Gamma Distributed at 5% Significance Level K-S Test Statistic 0.27 Kolmogorov-Smirnov Gamma GOF Test 5% K-S Critical Value 0.254 Data Not Gamma Distributed at 5% Significance Level Data Not Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 0.841 0.687 k star (bias corrected MLE) Theta hat (MLE) 62.95 Theta star (bias corrected MLE) 77.14 nu hat (MLE) 20.19 16.48 nu star (bias corrected) MLE Mean (bias corrected) 52.96 MLE Sd (bias corrected) 63.92 Approximate Chi Square Value (0.05) 8.299 Adjusted Chi Square Value 7.429 Adjusted Level of Significance 0.029 **Assuming Gamma Distribution** 95% Approximate Gamma UCL (use when n>=50)) 105.1 95% Adjusted Gamma UCL (use when n<50) 117.4 Lognormal GOF Test Shapiro Wilk Test Statistic Shapiro Wilk Lognormal GOF Test 0.922 5% Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.179 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.243 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level

Lognormal Statistics		
Minimum of Logged Data 1.886 Mea	an of logged Data	3.26
Maximum of Logged Data 5.832 SE	D of logged Data	1.0
Assuming Lognormal Distribution		
95% H-UCL 127.4 90% Chebys	shev (MVUE) UCL	88.1
95% Chebyshev (MVUE) UCL 108.1 97.5% Chebys	shev (MVUE) UCL	135.
99% Chebyshev (MVUE) UCL 190.5		
Nonparametric Distribution Free UCL Statistics		
Data appear to follow a Discernible Distribution at 5% Significance Level		
Nonparametric Distribution Free UCLs	50/ 1 11 16 1101	40
	5% Jackknife UCL	10
·	Bootstrap-t UCL	243.7
95% Hall's Bootstrap UCL 244.4 95% Percentil	ile Bootstrap UCL	104.
95% BCA Bootstrap UCL 139		
90% Chebyshev(Mean, Sd) UCL 133.3 95% Chebyshe	nev(Mean, Sd) UCL	169.
97.5% Chebyshev(Mean, Sd) UCL 220.1 99% Chebyshe	nev(Mean, Sd) UCL	319.3
Suggested UCL to Use	_	
95% Chebyshev (Mean, Sd) UCL 169.6		
s regarding the selection of a 95% UCL are provided to help the user to select the mos	st appropriate 95% l	UCL.
		UCL.

Summary of ProUCL Output North Orchard Surface Soil (0 to 1.5 feet bgs) **General Statistics** Total Number of Observations Number of Distinct Observations 12 Number of Missing Observations Minimum 10.5 Mear 127.8 34.9 Maximum 690 Mediar SD 195.1 Std. Error of Mear 56.32 Coefficient of Variation 1.527 Skewnes 2.522 Normal GOF Test Shapiro Wilk Test Statistic 0.652 Shapiro Wilk GOF Test 0.859 5% Shapiro Wilk Critical Value Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.274 Lilliefors GOF Test 5% Lilliefors Critical Value 0.243 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level **Assuming Normal Distribution** 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCI 228.9 95% Adjusted-CLT UCL (Chen-1995) 264.2 235.8 95% Modified-t UCL (Johnson-1978) Gamma GOF Test A-D Test Statistic 0.682 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.77 Detected data appear Gamma Distributed at 5% Significance Level 0.231 K-S Test Statistic Kolmogorov-Smirnov Gamma GOF Test 5% K-S Critical Value 0.256 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 0.687 0.571 k star (bias corrected MLE) Theta hat (MLE) 186.1 223.9 Theta star (bias corrected MLE) nu hat (MLE) 16.48 13.69 nu star (bias corrected) MLE Mean (bias corrected) 127.8 MLE Sd (bias corrected) 169.2 Approximate Chi Square Value (0.05) 6.362 Adjusted Chi Square Value 5.617 Adjusted Level of Significance 0.029 **Assuming Gamma Distribution** 95% Approximate Gamma UCL (use when n>=50) 275 95% Adjusted Gamma UCL (use when n<50) 311.5 Lognormal GOF Test Shapiro Wilk Test Statistic 0.914 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.177 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.243 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level

L	ognorma	Statistics	
Minimum of Logged Data	2.351	Mean of logged Data	3.968
Maximum of Logged Data	6.537	SD of logged Data	1.372
Assumir	ng Logno	rmal Distribution	
95% H-UCL	608.8	90% Chebyshev (MVUE) UCL	273.8
95% Chebyshev (MVUE) UCL	343.9	97.5% Chebyshev (MVUE) UCL	441.1
99% Chebyshev (MVUE) UCL	632.1		
Nonparametric	: Distribu	tion Free UCL Statistics	
Data appear to follow a Disc	cernible D	Distribution at 5% Significance Level	
Nonparam	etric Dist	ribution Free UCLs	
95% CLT UCL	220.4	95% Jackknife UCL	228.9
95% Standard Bootstrap UCL	215.8	95% Bootstrap-t UCL	356.6
95% Hall's Bootstrap UCL	570.1	95% Percentile Bootstrap UCL	225.7
95% BCA Bootstrap UCL	273.9		
90% Chebyshev(Mean, Sd) UCL	296.7	95% Chebyshev(Mean, Sd) UCL	373.3
97.5% Chebyshev(Mean, Sd) UCL	479.5	99% Chebyshev(Mean, Sd) UCL	688.2
Su	agested	UCL to Use	
95% Adjusted Gamma UCL	311.5		
Note: Suggestions regarding the selection of a 95% UC	CL are pro	vided to help the user to select the most appropriate 95%	UCL.
	•	a size, data distribution, and skewness.	
		nulation studies summarized in Singh, Maichle, and Lee (200	6).
·		s; for additional insight the user may want to consult a stati	

Summary of ProUCL Output North Orchard Shallow Soil (>1.5 to 2 feet bgs) **General Statistics** Total Number of Observations Number of Distinct Observations Number of Missing Observations Minimum 3.97 Mear 15.06 Maximum 45.3 Median 6.55 SD 17.33 Std. Error of Mear 7.749 Coefficient of Variation 1.151 Skewnes 1.988 Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.1 Normal GOF Test Shapiro Wilk Test Statistic 0.723 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.762 Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.327 Lilliefors GOF Test 5% Lilliefors Critical Value 0.343 Data appear Normal at 5% Significance Level Data appear Approximate Normal at 5% Significance Level **Assuming Normal Distribution** 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 31.58 95% Adjusted-CLT UCL (Chen-1995) 35.17 95% Modified-t UCL (Johnson-1978) 32.73 Gamma GOF Test A-D Test Statistic 0.505 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.688 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.301 Kolmogorov-Smirnov Gamma GOF Test 0.363 Detected data appear Gamma Distributed at 5% Significance Level 5% K-S Critical Value Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 1.311 k star (bias corrected MLE) 0.658 Theta star (bias corrected MLE) Theta hat (MLE) 11.49 22.89 6.578 13.11 nu hat (MLE) nu star (bias corrected) MLE Mean (bias corrected) 15.06 MLE Sd (bias corrected) 18.57 Approximate Chi Square Value (0.05) 1.942 1.033 0.0086 Adjusted Chi Square Value Adjusted Level of Significance Assuming Gamma Distribution 95% Approximate Gamma UCL (use when n>=50)) 51.01 95% Adjusted Gamma UCL (use when n<50) 95.87

ı	Lognormal C	GOF Test	
Shapiro Wilk Test Statistic	0.898	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.762	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.262	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.343	Data appear Lognormal at 5% Significance Level	
Data appear L	ognormal at	: 5% Significance Level	
	Lognormal S		
Minimum of Logged Data	1.379	Mean of logged Data	2.285
Maximum of Logged Data	3.813	SD of logged Data	0.97
		In the	
		nal Distribution	04.50
95% H-UCL	159.2	90% Chebyshev (MVUE) UCL	31.53
95% Chebyshev (MVUE) UCL	39.47	97.5% Chebyshev (MVUE) UCL	50.49
99% Chebyshev (MVUE) UCL	72.13		
N	. 5	E HGI G. P. P.	
·		on Free UCL Statistics	
Data appear to follow a Dis	scernible Di	stribution at 5% Significance Level	
		7 5	
		ibution Free UCLs	24.50
95% CLT UCL	27.81	95% Jackknife UCL	31.58
95% Standard Bootstrap UCL	26.43	95% Bootstrap-t UCL	156.9
95% Hall's Bootstrap UCL	130.2	95% Percentile Bootstrap UCL	29.28
95% BCA Bootstrap UCL	31.08		
90% Chebyshev(Mean, Sd) UCL	38.31	95% Chebyshev(Mean, Sd) UCL	48.84
97.5% Chebyshev(Mean, Sd) UCL	63.46	99% Chebyshev(Mean, Sd) UCL	92.17
<u> </u>	uggested U	ICI to Use	
95% Student's-t UCL	31.58	132 to 330	
7576 Stadent's 1 0 CE	31.50		
When a data set follows an approxim	nate (e.g., no	rmal) distribution passing one of the GOF test	
When applicable, it is suggested to use a UCL base	ed upon a di	stribution (e.g., gamma) passing both GOF tests in ProUC	L
Note: Suggestions regarding the selection of a 95% U	ICL are prov	ided to help the user to select the most appropriate 95% l	JCL.
Recommendations are base	ed upon data	size, data distribution, and skewness.	
These recommendations are based upon the result	ts of the simu	ulation studies summarized in Singh, Maichle, and Lee (2006).
However, simulations results will not cover all Real Wor	rld data sets;	for additional insight the user may want to consult a statis	tician.

Summary of ProUCL Output West Meadow Surface Soil (0 to 1.5 feet bgs) **General Statistics** Total Number of Observations Number of Distinct Observations 28 Number of Missing Observations 104.9 Minimum 6.16 Mear 39.1 Maximum 1230 Median SD 224.5 Std. Error of Mear 41.68 Coefficient of Variation 2.139 Skewnes 4.803 Normal GOF Test Shapiro Wilk Test Statistic 0.4 Shapiro Wilk GOF Test 0.926 5% Shapiro Wilk Critical Value Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.33 Lilliefors GOF Test 5% Lilliefors Critical Value 0.161 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level **Assuming Normal Distribution** 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCI 175.8 95% Adjusted-CLT UCL (Chen-1995) 213.2 182 95% Modified-t UCL (Johnson-1978) Gamma GOF Test A-D Test Statistic 1.385 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.786 Data Not Gamma Distributed at 5% Significance Level 0.164 K-S Test Statistic Kolmogorov-Smirnov Gamma GOF Test 0.169 Detected data appear Gamma Distributed at 5% Significance Level 5% K-S Critical Value Detected data follow Appr. Gamma Distribution at 5% Significance Level Gamma Statistics k hat (MLE) 0.727 0.674 k star (bias corrected MLE) Theta hat (MLE) 144.4 Theta star (bias corrected MLE) 155.6 nu hat (MLE) 42.14 39.11 nu star (bias corrected) MLE Mean (bias corrected) 104.9 MLE Sd (bias corrected) 127.8 Approximate Chi Square Value (0.05) 25.79 Adjusted Chi Square Value 25.14 Adjusted Level of Significance 0.0407 **Assuming Gamma Distribution** 95% Approximate Gamma UCL (use when n>=50) 159.1 95% Adjusted Gamma UCL (use when n<50) 163.2 Lognormal GOF Test Shapiro Wilk Test Statistic Shapiro Wilk Lognormal GOF Test 0.962 5% Shapiro Wilk Critical Value 0.926 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.0957 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.161 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level

I	Lognorma	Statistics	
Minimum of Logged Data	1.818	Mean of logged Data	3.826
Maximum of Logged Data	7.115	SD of logged Data	1.184
Assumi	ina Loano	rmal Distribution	
95% H-UCL	169.4	90% Chebyshev (MVUE) UCL	158.8
95% Chebyshev (MVUE) UCL	190.4	97.5% Chebyshev (MVUE) UCL	234.2
99% Chebyshev (MVUE) UCL	320.4		
Nonparametri	ic Distribu	tion Free UCL Statistics	
Data appear to follow a Dis	cernible [Distribution at 5% Significance Level	
Nonparan	netric Dist	tribution Free UCLs	
95% CLT UCL	173.5	95% Jackknife UCL	175.8
95% Standard Bootstrap UCL	170.8	95% Bootstrap-t UCL	328.4
95% Hall's Bootstrap UCL	419.5	95% Percentile Bootstrap UCL	182.2
95% BCA Bootstrap UCL	228.2		
90% Chebyshev(Mean, Sd) UCL	230	95% Chebyshev(Mean, Sd) UCL	286.6
97.5% Chebyshev(Mean, Sd) UCL	365.2	99% Chebyshev(Mean, Sd) UCL	519.7
Sı	uggested	UCL to Use	
95% Adjusted Gamma UCL	163.2		
When a data set follows an approxim	nate (e.g., n	ormal) distribution passing one of the GOF test	
,,,		distribution (e.g., gamma) passing both GOF tests in ProU	CL
Note: Suggestions regarding the selection of a 95% U	CL are prc	ovided to help the user to select the most appropriate 95%	UCL.
Recommendations are based	d upon dat	ta size, data distribution, and skewness.	
These recommendations are based upon the result	s of the sin	nulation studies summarized in Singh, Maichle, and Lee (200	06).
However, simulations results will not cover all Real Wor	ld data set	s; for additional insight the user may want to consult a stat	istician.

ervations	7
ervations	0
Mean	23.01
Median	15.9
of Mean	5.539
skewness	1.167
est.	
5.1	
nce Level	
aca Laval	
ice Levei	
ness)	
	34.74
	34.18
Test	
% Significa	nce Level
F Test	
% Significa	nce Level
ed MLE)	2.011
ed MLE)	11.45
	28.15
•	16.23
	17.04
re Value	14.5
.50	44.10
en n<50)	44.68

L	ognormal GO	F Test	
Shapiro Wilk Test Statistic	0.883	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.213	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level	
Data appear Lo	gnormal at 5°	% Significance Level	
ı	ognormal Sta	tistics	
Minimum of Logged Data	2.407	Mean of logged Data	2.98
Maximum of Logged Data	3.892	SD of logged Data	0.587
Assumi	ng Lognormal	Distribution	
95% H-UCL	44.07	90% Chebyshev (MVUE) UCL	37.99
95% Chebyshev (MVUE) UCL	44.89	97.5% Chebyshev (MVUE) UCL	54.46
99% Chebyshev (MVUE) UCL	73.28	77.3% Chebyshev (WVOE) OCE	34.40
, , , , , <u>, , , , , , , , , , , , , , </u>		<u>l</u>	
Non parametri	c Distribution	Free UCL Statistics	
Data appear to follow a Dis	cernible Distr	ibution at 5% Significance Level	
Nonparan	netric Distribu	tion Free UCLs	
95% CLT UCL	32.12	95% Jackknife UCL	33.78
95% Standard Bootstrap UCL	31.45	95% Bootstrap-t UCL	50.28
95% Hall's Bootstrap UCL	52.74	95% Percentile Bootstrap UCL	31.5
95% BCA Bootstrap UCL	33.09		
90% Chebyshev(Mean, Sd) UCL	39.63	95% Chebyshev(Mean, Sd) UCL	47.16
97.5% Chebyshev(Mean, Sd) UCL	57.6	99% Chebyshev(Mean, Sd) UCL	78.12
	uggested UCL	to Use	
95% Student's-t UCL	33.78		
Note: Suggestions regarding the selection of a 95% U	CL are provide	ed to help the user to select the most appropriate 95% U	JCL.
		e, data distribution, and skewness.	
These recommendations are based upon the results	s of the simulat	ion studies summarized in Singh, Maichle, and Lee (2006)).